Effectiveness Analysis of Deep Learning Methods for Breast Cancer Diagnosis Based on Histopathology Images
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Breast Histopathology Images Dataset
3.2. Data Preprocessing
3.3. Convolutional Neural Network (CNN)
3.4. VGG16
3.5. DenseNet201
3.6. MobileNet
3.7. Particle Swarm Optimization
4. Experimental Results
4.1. Experimental Study 1
4.1.1. Results Obtained Using the Custom-Built CNN Model
4.1.2. Results Obtained Using the VGG16 Model
4.1.3. Results Obtained Using the MobileNet Model
4.1.4. Results Obtained Using the DenseNet201 Model
4.2. Experimental Study 2
4.2.1. Results Obtained Using the Custom-Built CNN Model
4.2.2. Results Obtained Using the VGG16 Model
4.2.3. Results Obtained Using the MobileNet Model
4.2.4. Results Obtained Using the DenseNet201 Model
5. Discussion
6. Comparison of State-of-the-Art Studies
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salunkhe, P.B.; Patil, P.S. Rapid tri-net: Breast cancer classification from histology images using rapid tri-attention network. Multimed. Tools Appl. 2024, 83, 74625–74655. [Google Scholar] [CrossRef]
- Jenefa, A.; Lincy, A.; Naveen, V.E. A framework for breast cancer diagnostics based on MobileNetV2 and LSTM-based deep learning. In Computational Intelligence and Modelling Techniques for Disease Detection in Mammogram Images; Academic Press: Cambridge, MA, USA, 2024; pp. 91–110. [Google Scholar]
- Kumari, V.; Ghosh, R. A Magnification-Independent Method for Breast Cancer Classification Using Transfer Learning. Healthc. Anal. 2023, 3, 100207. [Google Scholar] [CrossRef]
- Sharmin, S.; Ahammad, T.; Talukder, M.A.; Ghose, P. A Hybrid Dependable Deep Feature Extraction and Ensemble-Based Machine Learning Approach for Breast Cancer Detection. IEEE Access 2023, 11, 87694–87708. [Google Scholar] [CrossRef]
- Joshi, S.A.; Bongale, A.M.; Olsson, P.O.; Urolagin, S.; Dharrao, D.; Bongale, A. Enhanced Pre-Trained Xception Model Transfer Learned for Breast Cancer Detection. Computation 2023, 11, 17. [Google Scholar] [CrossRef]
- Ali, M.D.; Ahmed, M.; Hasan, S.; Siddiquee, M.; Rahman, M.; Rahman, T. Breast Cancer Classification through Meta-Learning Ensemble Technique Using Convolution Neural Networks. Diagnostics 2023, 13, 2242. [Google Scholar] [CrossRef]
- Vedanvita, G.; Racha Ganesh, S. Breast Cancer Classification Using Deep Convolutional Neural Networks. CVR J. Sci. Technol. 2022, 23, 52–57. [Google Scholar] [CrossRef]
- Dandıl, E.; Selvi, A.O.; Çevik, K.K.; Yıldırım, M.S.; Uzun, S. A Hybrid Method Based on Feature Fusion for Breast Cancer Classification Using Histopathological Images. Eur. J. Sci. Technol. 2021, 29, 129–137. [Google Scholar] [CrossRef]
- Karakeçi, Z.B.; Talu, M.F. Cancer Detection and Location Methods in Histopathological Images. Eur. J. Sci. Technol. 2021, 23, 608–616. [Google Scholar] [CrossRef]
- Talo, M. Classification of Histopathological Breast Cancer Images Using Convolutional Neural Networks. Fırat Univ. J. Eng. Sci. 2019, 31, 391–398. [Google Scholar]
- Khan, S.R.; Raza, A.; Meeran, M.T.; Bilhaj, U. Enhancing Breast Cancer Detection Through Thermal Imaging and Customized 2D CNN Classifiers. VFAST Trans. Softw. Eng. 2023, 11, 80–92. [Google Scholar] [CrossRef]
- Özdemir, C. A New FCN Model for Cancer Cell Segmentation in Breast Ultrasound Images. Afyon Kocatepe Univ. J. Sci. Eng. 2023, 23, 1160–1170. [Google Scholar] [CrossRef]
- Boukaache, A.; Nasser Edinne, B.; Boudjehem, D. Breast Cancer Image Classification Using Convolutional Neural Networks (CNN) Models. Int. J. Inform. Appl. Math. 2024, 6, 20–34. [Google Scholar] [CrossRef]
- Karagöz, M.A.; Demirci, A.; Yıldız, E.; Güler, B. Deep Learning-Based Breast Cancer Diagnosis with Multiview of Mammography Screening to Reduce False Positive Recall Rate. Turk. J. Electr. Eng. Comput. Sci. 2024, 32, 382–402. [Google Scholar] [CrossRef]
- Chandana Mani, R.K.; Kamalakannan, J.; Pandu Rangaiah, Y.; Anand, S. A Bio-Inspired Method for Breast Histopathology Image Classification Using Transfer Learning. J. Artif. Intell. Technol. 2023, 3, 89–101. [Google Scholar] [CrossRef]
- Karakurt, M.; İşeri, İ. Classification of Pathology Images with Deep Learning Methods. Eur. J. Sci. Technol. 2022, 33, 192–206. [Google Scholar] [CrossRef]
- Muhammad, B.; Ozkaynak, F.; Varol, A.; Tuncer, T. A Novel Deep Feature Extraction Engineering for Subtypes of Breast Cancer Diagnosis: A Transfer Learning Approach. In Proceedings of the 10th International Symposium on Digital Forensics and Security (ISDFS), Istanbul, Turkey, 6–7 July 2022. [Google Scholar] [CrossRef]
- Özgür, S.N.; Keser, S.B. Classification of Breast Cancer Tumors with Deep Learning Algorithms. Turk. J. Nat. Sci. 2021, 10, 212–222. [Google Scholar] [CrossRef]
- Dandil, E.; Serin, Z. Breast Cancer Detection on Histopathological Images Using Deep Neural Networks. Eur. J. Sci. Technol. 2020, 451–463. [Google Scholar] [CrossRef]
- Erdem, E.; Aydın, T. Breast Cancer Histopathological Image Classification. J. Inf. Technol. 2021, 14, 87–94. [Google Scholar] [CrossRef]
- Bayramoglu, N.; Kannala, J.; Heikkila, J. Deep Learning for Magnification Independent Breast Cancer Histopathology Image Classification. In Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2440–2445. [Google Scholar] [CrossRef]
- Alghodhaifi, H.; Alghodhaifi, A.; Alghodhaifi, M. Predicting Invasive Ductal Carcinoma in Breast Histology Images Using Convolutional Neural Network. In Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15–19 July 2019; pp. 374–378. [Google Scholar] [CrossRef]
- Murali, A. Non-Invasive, Early Detection of Invasive Ductal Carcinoma (IDC) via Deep Convolutional Neural Networks Using Breast Cancer Histology Images. Int. J. Sci. Eng. Res. 2019, 10, 1788–1795. [Google Scholar]
- Cruz-Roa, A.; Gilmore, H.; Basavanhally, A.; Feldman, M.; Ganesan, S.; Shih, N.; Tomaszewski, J.; Madabhushi, A. Automatic Detection of Invasive Ductal Carcinoma in Whole Slide Images with Convolutional Neural Networks. In Medical Imaging 2014: Digital Pathology; SPIE: San Diego, CA, USA, 2014. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, J. A Machine Learning Model for Detecting Invasive Ductal Carcinoma with Google Cloud AutoML Vision. Comput. Biol. Med. 2020, 122, 103861. [Google Scholar] [CrossRef]
- Chatterjee, C.C.; Krishna, G. A Novel Method for IDC Prediction in Breast Cancer Histopathology Images Using Deep Residual Neural Networks. In Proceedings of the 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, 28–29 September 2019; pp. 95–100. [Google Scholar] [CrossRef]
- Karatayev, M.; Khalyk, S.; Adai, S.; Lee, M.H.; Demirci, M.F. Breast Cancer Histopathology Image Classification Using CNN. In Proceedings of the 16th International Conference on Electronics Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 25–26 November 2021. [Google Scholar] [CrossRef]
- Pushkar Sathe, A.P.; Bombay, M.; Mani, G.S.; Kalathil, D. Cancer Detection Using Machine Learning. Int. Res. J. Eng. Technol. 2020, 7, 399–406. [Google Scholar] [CrossRef]
- Tasnim, Z.; Hassan, F.; Ahmed, M.; Mahfuzur Rahman, A. Classification of Breast Cancer Cell Images Using Multiple Convolution Neural Network Architectures. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 308–315. [Google Scholar] [CrossRef]
- Yilmaz, F.; Kose, O.; Demir, A. Comparison of Two Different Deep Learning Architectures on Breast Cancer. In Proceedings of the 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 3–5 October 2019; pp. 39–42. [Google Scholar] [CrossRef]
- Kote, S.; Agarwal, S.; Kodipalli, A.; Martis, R.J. Comparative Study of Classification of Histopathological Images. In Proceedings of the 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Op-timization Techniques (ICEECCOT), Mysuru, India, 10–11 December 2021; pp. 156–160. [Google Scholar] [CrossRef]
- Narayanan, B.N.; Krishnaraja, V.; Ali, R. Convolutional Neural Network for Classification of Histopathology Images for Breast Cancer Detection. In Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15–19 July 2019; pp. 291–295. [Google Scholar] [CrossRef]
- Pukale, P.D.D.; Kale, D.; Jadhav, R.; Gaikwad, A.; Hadke, A. Deep Learning for Early Detection of Breast Cancer Using Histopathological Images. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 1115–1119. [Google Scholar] [CrossRef]
- Chapala, H.R.; Sujatha, B. ResNet: Detection of Invasive Ductal Carcinoma in Breast Histopathology Images Using Deep Learning. In Proceedings of the 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4 July 2020; pp. 60–67. [Google Scholar] [CrossRef]
- Dang, A.Q. Cancer Prediction Using Machine Learning Algorithms; Computer Science Senior Capstone 2020; Earlham College: Richmond, Indiana, 2020; Available online: https://portfolios.cs.earlham.edu/wp-content/uploads/2020/05/aqdang16_paper_final.pdf (accessed on 5 January 2023).
- Breast Histopathology Images Dataset. Kaggle. 2017. Available online: https://www.kaggle.com/datasets/paultimothymooney/breast-histopathology-images (accessed on 9 October 2024).
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2017, 4700, 4700–4708. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Pawan, Y.N.; Prakash, K.B.; Chowdhury, S.; Hu, Y.C. Particle Swarm Optimization Performance Improvement Using Deep Learning Techniques. Multimed. Tools Appl. 2022, 81, 27949–27968. [Google Scholar] [CrossRef]
- Kushwaha, N.; Pant, M. Modified Particle Swarm Optimization for Multimodal Functions and Its Application. Multimed. Tools Appl. 2019, 78, 23917–23947. [Google Scholar] [CrossRef]
Model | Number of Data: 157,572 Image Size: 50 × 50 × 3 | Accuracy | FLOPS (Batch_Size = 1) | Training Time (Second) |
---|---|---|---|---|
VGG16 | Batch_size: 200 Epoch:50 | 92.99% | 1.5 G | 1660.61 |
MobileNet | Batch_size: 200 Epoch:50 | 92.75% | 0.049 G | 1025.61 |
DenseNet201 | Batch_size: 200 Epoch:50 | 90.18% | 0.399 G | 4858.08 |
The custom-built CNN model | Batch_size: 200 Epoch:50 | 93.80% | 0.0889 G | 789.09 |
Model | Number of Data: 1116 Image Size: 224 × 224 × 3 | Accuracy | FLOPS (Batch_Size = 1) | Training Time (Second) |
---|---|---|---|---|
VGG16 | Batch_size: 8 Epoch:50 | 86.60% | 30.8 G | 167.39 |
MobileNet | Batch_size: 32 Epoch:50 | 95.54% | 1.15 G | 258.82 |
DenseNet201 | Batch_size: 8 Epoch:50 | 92.86% | 8.63 G | 591.83 |
The custom-built CNN model | Batch_size: 32 Epoch:50 | 92.86% | 2.34 G | 111.16 |
Name (Year) | Method | Dataset | Accuracy Rates |
[25] | AutoML vs. Holdout | (Breast Histopathology Images, Kaggle) | AutoML: 91.6% Holdout: 84.6% |
[26] | DRNN | (Breast Histopathology Images, Kaggle) A subset of 7500 images was used. | 99.29% |
[27] | VGG16, ResNet18, DenseNet, CancerNet, and CNN | (Breast Histopathology Images, Kaggle) | CNN: 92% |
[28] | AlexNet, VGG19, InceptionV3, Xception, and GoogLeNet | (Breast Histopathology Images, Kaggle) A total of 1728 images were used for model testing. | AlexNet: 96.74% VGG19: 94.83% InceptionV3: 92.48% Xception: 90.72% GoogLeNet: 97.80% |
[29] | AlexNet, VGG19, InceptionV3, Xception, and GoogLeNet | (Breast Histopathology Images, Kaggle) A total of 27,800 images were used for model training and testing. | AlexNet: 96.74% VGG19: 94.83% InceptionV3: 92.48% Xception: 90.72% GoogLeNet: 97.80% |
[30] | DenseNet-201 and Xception | (Breast Histopathology Images, Kaggle) A total of 31,827 images were used. | DenseNet-201: 96.74% Xception: 96.69% |
[31] | LeNet, AlexNet, VGG19, VGG16, ResNet50, SVM, and Twin SVM | (Breast Histopathology Images, Kaggle) Two datasets were used in the studies, one was balanced and the other was imbalanced. The imbalanced dataset contained 65,279 IDC-negative images and 24,721 IDC-positive images. On the other hand, the balanced dataset consisted of 2788 IDC-positive images and 2759 IDC-negative images. | Unbalanced dataset: LeNet: 73% AlexNet: 79% VGG19: 81% VGG16: 85% ResNet50: 88% SVM: 86% Twin SVM: 73% Balanced dataset LeNet: 65% AlexNet: 72% VGG19: 73% VGG16: 74% ResNet50: 78% SVM: 76% Twin SVM: 62% |
[32] | CNN with color constancy and CNN with histogram equalization | (Breast Histopathology Images, Kaggle) | CNN with Color Constancy AUC Value: 0.935 CNN with Histogram Equalization AUC Value: 0.876 |
[33] | CNN | (Breast Histopathology Images, Kaggle) | 90% |
[34] | ResNet50 and ResNet34 | (Breast Histopathology Images, Kaggle) | ResNet50: 91% ResNet34: 90% |
[35] | MobileNetV2 and EfficientNet | (Breast Histopathology Images, Kaggle) | MobileNetV2: 92.35% EfficientNet: 91.02% |
This Study | A custom-built CNN model, MobileNet, DenseNet201, and VGG16 | (Breast Histopathology Images, Kaggle) | Experimental Study 1 A custom-built CNN model: 93.80% MobileNet: 92.75% DenseNet201: 90.18% VGG16: 92.99% Experimental Study 2 A custom-built CNN model: 92.86% MobileNet: 95.54% DenseNet201: 92.86% VGG16: 86.60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korkmaz, M.; Kaplan, K. Effectiveness Analysis of Deep Learning Methods for Breast Cancer Diagnosis Based on Histopathology Images. Appl. Sci. 2025, 15, 1005. https://doi.org/10.3390/app15031005
Korkmaz M, Kaplan K. Effectiveness Analysis of Deep Learning Methods for Breast Cancer Diagnosis Based on Histopathology Images. Applied Sciences. 2025; 15(3):1005. https://doi.org/10.3390/app15031005
Chicago/Turabian StyleKorkmaz, Merve, and Kaplan Kaplan. 2025. "Effectiveness Analysis of Deep Learning Methods for Breast Cancer Diagnosis Based on Histopathology Images" Applied Sciences 15, no. 3: 1005. https://doi.org/10.3390/app15031005
APA StyleKorkmaz, M., & Kaplan, K. (2025). Effectiveness Analysis of Deep Learning Methods for Breast Cancer Diagnosis Based on Histopathology Images. Applied Sciences, 15(3), 1005. https://doi.org/10.3390/app15031005