Collaborative Optimization of Aerodynamics and Wind Turbine Blades
Abstract
:1. Introduction
2. Collaborative Optimization
3. Discipline Analysis
3.1. Aerodynamic Discipline
3.1.1. Airfoil Design and Optimization
3.1.2. Aerodynamic Shape Design
- (1)
- Global parameters including the number of blades, tip speed ratio, rated power and wind velocity, rotor angular velocity, and blade length are determined according to the specific needs.
- (2)
- One divides the blade into n parts alongside the length of the blade. Thus n + 1 sections can be obtained and each section can be viewed as an airfoil. The local radius ri and speed ratio λi can also be obtained.
- (3)
- After initialization of induction factors a and b, one can take the maximization of the power coefficient (8) as the objective function and expression (13) as the constraint and then perform an optimization calculation to obtain updated induction factors (ai, bi) and tip loss factor FPi.
- (4)
- Based on the optimized {ai, bi, FPi}, one can obtain the direction angle φi according to (11) and chord length ci according to (14). The twist angle θi is then determined according to (12).
3.2. Structure Discipline
3.2.1. Material Selection
3.2.2. Lay-Up Design
3.2.3. Modal Analysis
3.2.4. Static Structural Analysis
4. MDO of the Wind Turbine Blade
4.1. Optimization Objective
4.2. Surrogate Model
5. Conclusions
- (1)
- Collaborative optimization provides an effective optimization strategy for the design of wind turbine blades. In the strategy, multiple disciplines can be optimized simultaneously. Unlike direct optimization, the consistency between disciplines is considered, which helps in obtaining an overall globally optimal solution.
- (2)
- In MDO and multiobjective optimization, design variables might be different for different disciplines. Parameter sensitivity analysis emphasizes the important design variables in a specific discipline. As can be seen from the results of the parameter analysis, the chord length and twist angle exert an important influence on the torque while spar ply thickness greatly affects the mass of the blade.
- (3)
- Surrogate models in an MDO framework can effectively replace the time-consuming use of numerical simulation modules, with high accuracy and high efficiency. In the study, an optimal Latin hypercube design-based Kriging surrogate model is established.
- (4)
- Parameterized modeling can effectively improve the modeling accuracy of an airfoil and help the subsequent optimization of the wind turbine blade. In the study, class function/shape function transformation is shown to be feasible for representing the airfoil of the wind turbine blade.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Migliore, P.G. Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines. J. Energy 1983, 7, 291–292. [Google Scholar] [CrossRef]
- Timmer, W. An overview of NACA 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Tangler, J.L.; Somers, D.M. NREL Airfoil Families for HAWTs; National Renewable Energy Laboratory: Golden, CO, USA, 1995. [Google Scholar]
- Fuglsang, P.; Dahl, K.S. Design of the new Risø-A1 airfoil family for wind turbines. In Proceedings of the 1999 European Wind Energy Conference, Nice, France, 1–5 March 1999; pp. 134–137. [Google Scholar]
- Timmer, W.A.; Van Rooij, R. Summary of the Delft University wind turbine dedicated airfoils. J. Sol. Energy Eng. 2003, 125, 488–496. [Google Scholar] [CrossRef]
- Bertagnolio, F.; Sørensen, N.; Johansen, J.; Fuglsang, P. Wind Turbine Airfoil Catalogue; Ris National Laboratory: Roskilde, Denmark, 2001. [Google Scholar]
- Wang, X.F.; Xi, G. Aerodynamic optimization design for airfoil based on Kriging model. Acta Aeronaut. Et Astronaut. Sin. 2005, 26, 545–549. [Google Scholar]
- Zhang, Q.; Miao, W.; Liu, Q.; Xu, Z.; Li, C.; Chang, L.; Yue, M. Optimized design of wind turbine airfoil aerodynamic performance and structural strength based on surrogate model. Ocean Eng. 2023, 289, 116279. [Google Scholar] [CrossRef]
- Chen, J.T.; Chen, J.; Shen, W.Z.; Zhu, W.J.; Wang, X.D. Design of wind turbine airfoils based on maximum power coefficient. J. Mech. Eng. 2010, 46, 111–117. [Google Scholar] [CrossRef]
- Qiao, Z.D.; Song, W.P.; Gao, Y.W. Design and experiment of the NPU-WA airfoil family for wind turbines. Acta Aerodyn. Sin. 2012, 30, 260–265. [Google Scholar]
- Hu, Z.Q. Optimization Design of the Horizontal-axis Wind Turbine Airfoil Based on iSIHGT. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2010. [Google Scholar]
- Li, S.L. Study on Integrated Aerodynamic Shape and Structure Design Theory for Wind Turbine Blade Based on Airfoil Library. Ph.D. Thesis, Chongqing University, Chongqing, China, 2015. [Google Scholar]
- Ma, T.Q.; Chen, M.; Sun, C.Z. A new method for modification of blind edge of airfoil blade airfoil and analysis of its aerodynamic performance. Renew. Energy Resour. 2020, 38, 1610–1614. [Google Scholar]
- Zhou, P.Z.; He, Z.; Wang, Q.; Zhang, L. Optimization design of airfoil based on Bezier curve and bend function. J. Chang. Univ. Sci. Technol. 2020, 17, 90–94. [Google Scholar]
- Akbari, V.; Naghashzadegan, M.; Kouhikamali, R.; Afsharpanah, F.; Yaïci, W. Multi-objective optimization and optimal airfoil blade selection for a small horizontal-axis wind turbine (HAWT) for application in regions with various wind potential. Machines 2022, 10, 687. [Google Scholar] [CrossRef]
- Glauert, H. The Elements of Aerofoil and Airscrew Theory; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Wilson, R.E.; Lissaman, P.B.; Walker, S.N. Aerodynamic Performance of Wind Turbines; Final report (No. ERDA/NSF/04014-76/1); Department of Mechanical Engineering, Oregon State University: Corvallis, OR, USA, 1976. [Google Scholar]
- Badreddinne, K.; Ali, H.; David, A. Optimum project for horizontal axis wind turbines ‘OPHWT’. Renew. Energy 2005, 30, 2019–2043. [Google Scholar] [CrossRef]
- Rajakumar, S.; Ravindran, D. Iterative approach for optimising coefficient of power, coefficient of lift and drag of wind turbine rotor. Renew. Energy 2012, 38, 83–93. [Google Scholar] [CrossRef]
- Zahle, F.; Sørensen, N.N.; McWilliam, M.K.; Barlas, A. Computational fluid dynamics-based surrogate optimization of a wind turbine blade tip extension for maximising energy production. J. Phys. Conf. Ser. 2018, 1037, 042013. [Google Scholar] [CrossRef]
- Shen, X.; Yang, H.; Chen, J.; Zhu, X.; Du, Z. Aerodynamic shape optimization of non-straight small wind turbine blades. Energy Convers. Manag. 2016, 119, 266–278. [Google Scholar] [CrossRef]
- Yirtici, O.; Tuncer, I.H. Aerodynamic shape optimization of wind turbine blades for minimizing power production losses due to icing. Cold Reg. Sci. Technol. 2021, 185, 103250. [Google Scholar] [CrossRef]
- Farhikhteh, M.E.; Papoutsis-Kiachagias, E.M.; Giannakoglou, K.C. Aerodynamic shape optimization of wind turbine rotor blades using the continuous adjoint method. Optim. Eng. 2023, 25, 1991–2015. [Google Scholar] [CrossRef]
- Li, J.; Dao, M.H.; Le, Q.T. Data-driven modal parameterization for robust aerodynamic shape optimization of wind turbine blades. Renew. Energy 2024, 224, 120115. [Google Scholar] [CrossRef]
- Anderson, E.M.; Bhuiyan, F.H.; Mavriplis, D.J.; Fertig, R.S., III. Adjoint-based high-fidelity structural optimization of wind-turbine blade for load stress minimization. AIAA J. 2019, 57, 4057–4070. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chen, Y.Z. Wind turbine blades optimization based on evolutionary algorithm. J. Chongqing Univ. Technol. 2016, 30, 47–52. [Google Scholar]
- Chen, J.; Wang, Q.; Shen, W.Z.; Pang, X.; Li, S.; Guo, X. Structural optimization study of composite wind turbine blade. Mater. Des. 2013, 46, 247–255. [Google Scholar] [CrossRef]
- Bagherpoora, T.; Li, X.M. Structural optimization design of 2 MW composite wind turbine blade. Energy Procedia 2017, 105, 1226–1233. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Shah, O.R.; Nachtane, M. Design and optimization of composite offshore wind turbine blades. J. Energy Resour. Technol. 2019, 141, 051204. [Google Scholar] [CrossRef]
- Lee, S.L.; Shin, S.J. Structural design optimization of a wind turbine blade using the genetic algorithm. Eng. Optim. 2022, 54, 2053–2070. [Google Scholar] [CrossRef]
- Zhao, Q.X.; Zhang, L.T. Ply parameter optimization of wind turbine blade based on radial basis function neural network. Acta Energiae Solaris Sin. 2020, 41, 229–234. [Google Scholar]
- Couto, L.D.L.; Moreira, N.E.; Saito, J.; Hallak, P.H.; Lemonge, A. Multi-objective structural optimization of a composite wind turbine blade considering natural frequencies of vibration and global stability. Energies 2023, 16, 3363. [Google Scholar] [CrossRef]
- Wang, X.D.; Shen, W.Z.; Zhu, W.J.; Sørensen, J.N.; Jin, C. Shape optimization of wind turbine blades. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2009, 12, 781–803. [Google Scholar]
- Wang, L. Study of Multi-Objective Optimization Design of Large Scale Wind Turbine Blade. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2014. [Google Scholar]
- Pourrajabian, A.; Afshar, P.; Ahmadizadeh, M.; Wood, D. Aero-structural design and optimization of a small wind turbine blade. Renew. Energy 2016, 87, 837–848. [Google Scholar] [CrossRef]
- Dal Monte, A.; De Betta, S.; Castelli, M.R.; Benini, E. Proposal for a coupled aerodynamic–structural wind turbine blade optimization. Compos. Struct. 2017, 159, 144–156. [Google Scholar] [CrossRef]
- Yang, H.; Chen, J.; Pang, X.; Chen, G. A new aero-structural optimization method for wind turbine blades used in low wind speed areas. Compos. Struct. 2019, 207, 446–459. [Google Scholar] [CrossRef]
- Wang, Z.; Suiker, A.S.; Hofmeyer, H.; van Hooff, T.; Blocken, B. Coupled aerostructural shape and topology optimization of horizontal-axis wind turbine rotor blades. Energy Convers. Manag. 2020, 212, 112621. [Google Scholar] [CrossRef]
- Yao, S.; Chetan, M.; Griffith, D.T.; Escalera Mendoza, A.S.; Selig, M.S.; Martin, D.; Kianbakht, S.; Johnson, K.; Loth, E. Aero-structural design and optimization of 50 MW wind turbine with over 250-m blades. Wind Eng. 2022, 46, 273–295. [Google Scholar] [CrossRef]
- Luo, W.L.; Lyu, W.J. An application of multidisciplinary design optimization to the hydrodynamic performances of underwater robots. Ocean Eng. 2015, 104, 686–697. [Google Scholar] [CrossRef]
- Vasjaliya, N.G.; Gangadharan, S.N. Aero-structural design optimization of composite wind turbine blade. In Proceedings of the 10th world congress on structural and multidisciplinary optimization, Orlando, FL, USA, 19–24 May 2013. [Google Scholar]
- Pavese, C.; Tibaldi, C.; Zahle, F.; Kim, T. Aeroelastic multidisciplinary design optimization of a swept wind turbine blade. Wind Energy 2017, 20, 1941–1953. [Google Scholar] [CrossRef]
- McWilliam, M.K.; Zahle, F.; Dicholkar, A.; Verelst, D.; Kim, T. Optimal aero-elastic design of a rotor with bend-twist coupling. J. Phys. Conf. Ser. 2018, 1037, 042009. [Google Scholar] [CrossRef]
- Batay, S.; Baidullayeva, A.; Zhao, Y.; Wei, D.; Baigarina, A.; Sarsenov, E.; Shabdan, Y. Aerostructural Design Optimization of Wind Turbine Blades. Processes 2023, 12, 22. [Google Scholar] [CrossRef]
- Meng, D.B.; Yang, S.Y.; de Jesus, A.M.P.; Zhu, S.P. A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower. Renew. Energy 2023, 203, 407–420. [Google Scholar] [CrossRef]
- Scott, S.J. Optimal Aeroelastic Tailoring of Wind Turbines. Ph.D. Thesis, University of Bristol, Bristol, UK, 2021. [Google Scholar]
- Mangano, M.; He, S.; Liao, Y.; Caprace, D.G.; Ning, A.; Martins, J.R. Aeroelastic Tailoring of Wind Turbine Rotors Using High-Fidelity Multidisciplinary Design Optimization. Wind. Energy Sci. Discuss. 2023, 1–33. [Google Scholar] [CrossRef]
- Martins, J.; Lambe, A. Multidisciplinary design optimization: A survey of architectures. AIAA J. 2013, 51, 2049–2075. [Google Scholar] [CrossRef]
- Kulfan, B.M. Universal parametric geometry representation method. J. AIAA 2008, 45, 142–158. [Google Scholar] [CrossRef]
- Pan, W.F.; Luo, W.L. Lines optimisation of an underwater vehicle using SMOTE and adaptive minimise LCB based dynamic surrogate models. Ships Offshore Struct. 2024, 19, 91–108. [Google Scholar] [CrossRef]
Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5 | |
---|---|---|---|---|---|
Number of grids | 184,863 | 306,083 | 378,695 | 415,955 | 557,703 |
Lif coefficient | 0.4037 | 0.39404 | 0.3933 | 0.3900 | 0.38917 |
Error | 3.7% | 1.2% | 1.1% | 0.2% | N/A |
Coefficient | Baseline Airfoil | Optimized Airfoil | Variation (%) |
---|---|---|---|
0.92564 | 0.93292 | 0.7 | |
0.02163 | 0.0209 | −3.375 | |
42.794 | 44.634 | 4.299 |
Station No. | Radius Ratio r/R | Chord Length c (m) | Twist Angle (Degree) |
---|---|---|---|
1 | 0.15 | 0.65 | 22.2401 |
2 | 0.2 | 0.72 | 18.1109 |
3 | 0.25 | 0.6707 | 14.6253 |
4 | 0.3 | 0.5927 | 11.7227 |
5 | 0.35 | 0.5266 | 9.3421 |
6 | 0.4 | 0.4711 | 7.4228 |
7 | 0.45 | 0.4248 | 5.9038 |
8 | 0.5 | 0.3866 | 4.7244 |
9 | 0.55 | 0.3551 | 3.8237 |
10 | 0.6 | 0.329 | 3.1409 |
11 | 0.65 | 0.3071 | 2.6151 |
12 | 0.7 | 0.2881 | 2.1856 |
13 | 0.75 | 0.2706 | 1.7914 |
14 | 0.8 | 0.2534 | 1.3717 |
15 | 0.85 | 0.2353 | 0.8657 |
16 | 0.9 | 0.2149 | 0.2126 |
17 | 0.95 | 0.1909 | −0.6485 |
18 | 1 | 0.1621 | −1.7784 |
Property | Epoxy E-Glass UD | PVC | Spar Cap Mixture |
---|---|---|---|
Ex (MPa) | 45,000 | 70 | 25,000 |
Ey (MPa) | 10,000 | 70 | 9230 |
Ez (MPa) | 10,000 | 70 | 9230 |
PRxy | 0.3 | 0.3 | 0.35 |
PRyz | 0.4 | 0.3 | 0.35 |
PRxz | 0.3 | 0.3 | 0.35 |
Gxy (MPa) | 5000 | 27 | 5000 |
Gxy (MPa) | 3846 | 27 | 5000 |
Gxy (MPa) | 5000 | 27 | 5000 |
ρ (kg/m3) | 2000 | 60 | 1750 |
Mode | Frequency [Hz] |
---|---|
1 | 3.2396 |
2 | 7.8134 |
3 | 12.087 |
4 | 20.028 |
5 | 30.848 |
6 | 36.809 |
D | M | |||
---|---|---|---|---|
R2 | 0.93107 | 0.97377 | 0.9183 | 0.96663 |
Variable | Initial Values | Range | Optimized Results |
---|---|---|---|
a1 | −1.7135 | [−1.74, −1.7] | −1.7242 |
a2 | 3.9152 | [3.9, 3.94] | 3.9108 |
a3 | −3.3233 | [−3.34, −3.3] | −3.3081 |
a4 | 1.2836 | [1.26, 1.3] | 1.2907 |
b1 | −81.1153 | [−82, −80] | −80.4060 |
b2 | 177.4159 | [176, 178] | 177.7467 |
b3 | −137.1777 | [−138, −136] | −136.2567 |
b4 | 44.5987 | [43, 45] | 44.4364 |
d1 (mm) | 20 | [15, 25] | 17.7579 |
d2 (mm) | 20 | [15, 25] | 16.0984 |
d3 (mm) | 18 | [15, 25] | 15.3651 |
d4 (mm) | 16 | [15, 25] | 15.1506 |
D (N·m) | 295.22 | N/A | 325.04 (+10.1%) |
M (t) | 0.40475 | N/A | 0.3845 (−5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, F.; Zheng, X.; Luo, W.; Zhong, J.; Huang, Y.; Ye, A.; Qiu, R.; Ma, H. Collaborative Optimization of Aerodynamics and Wind Turbine Blades. Appl. Sci. 2025, 15, 834. https://doi.org/10.3390/app15020834
He F, Zheng X, Luo W, Zhong J, Huang Y, Ye A, Qiu R, Ma H. Collaborative Optimization of Aerodynamics and Wind Turbine Blades. Applied Sciences. 2025; 15(2):834. https://doi.org/10.3390/app15020834
Chicago/Turabian StyleHe, Fushan, Xingsheng Zheng, Weilin Luo, Jianfeng Zhong, Yunhua Huang, Aili Ye, Rongrong Qiu, and Huafu Ma. 2025. "Collaborative Optimization of Aerodynamics and Wind Turbine Blades" Applied Sciences 15, no. 2: 834. https://doi.org/10.3390/app15020834
APA StyleHe, F., Zheng, X., Luo, W., Zhong, J., Huang, Y., Ye, A., Qiu, R., & Ma, H. (2025). Collaborative Optimization of Aerodynamics and Wind Turbine Blades. Applied Sciences, 15(2), 834. https://doi.org/10.3390/app15020834