Comprehensive Monitoring of Construction Spoil Disposal Areas in High-Speed Railways Utilizing Integrated 3S Techniques
Abstract
:1. Introduction
2. Literature Review
3. Research Method
3.1. Data Collection
3.1.1. GF-1 Satellite Data
3.1.2. UAV Data
3.1.3. Sentinel-1 Satellite Data
3.2. Model Development
3.2.1. Monitoring Scenario 1: Identification of Disturbance Boundaries
- Step 1: Imagery fusion and cropping
- Step 2: Unsupervised classification
- Step 3: Manual verification
- Step 4: Spatial analysis
3.2.2. Monitoring Scenario 2: Extraction of Soil and Water Conservation Measures
- Step 1: Visual interpretation
- Step 2: Manual verification
- Step 3: Overlay analysis
3.2.3. Monitoring Scenario 3: Estimation of Spoil Volume Changes
- Step 1: Imagery coregistration and cropping
- Step 2: Interferogram pairing and baseline estimation
- Step 3: Interferogram formation and phase unwrapping
- Step 4: Surface deformation calculation
- Step 5: Dynamic estimation of spoil volume changes
4. Case Study
4.1. Background of the Case Study
4.2. Result Analysis
4.2.1. Identification of Disturbance Boundaries
- (1)
- Unsupervised classification of RS imagery from SDAs
- (2)
- Manual preliminary judgment of classification results
- (3)
- Determination and analysis of disturbance boundaries of SDAs
4.2.2. Extraction of Soil and Water Conservation Measures
- (1)
- Manual visual interpretation and verification of UAV imagery
- (2)
- Spatial overlay analysis of UAV imagery from multiple periods
4.2.3. Estimation of Spoil Volume Changes
- (1)
- Elevation changes of SDAs
- (2)
- Estimation of dynamic changes of earth and rock in SDAs
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olawumi, T.O.; Chan, D.W.M. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Guo, D.; He, G.; Lian, Z. Environmental risk perception and public trust—From planning to operation for China’s high-speed railway. Int. J. Sustain. Transp. 2017, 11, 696–706. [Google Scholar] [CrossRef]
- Huang, J.; Yin, Y.; Zhang, L.; Zhang, S.; Zhao, Q.; Chen, H. Life cycle assessment of construction and demolition waste from railway engineering projects. Comput. Intell. Neurosci. 2022, 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.U.; Ng, S.T.; Antwi-Afari, P.; Amor, B. Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renew. Sust. Energy Rev. 2020, 130, 109948. [Google Scholar] [CrossRef]
- He, Z.; Chen, Z.; Feng, X. How does high-speed railway affect green technology innovation? A perspective of high-quality human capital. Environ. Sci. Eur. 2023, 35, 1–12. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, J.; Bai, M.; Gao, Q.; Wu, Y. Reuse of construction spoil in China: Current status and future opportunities. J. Clean. Prod. 2021, 290, 125876. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Cheng, J.C.P. Formulation and analysis of dynamic supply chain of backfill in construction waste management using agent-based modeling. Adv. Eng. Inform. 2015, 29, 878–888. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Tapoglou, E.; Vozinaki, A.-E.K.; Tsanis, I.K. Integrated use of satellite remote sensing, artificial neural networks, field spectroscopy, and GIS in estimating crucial soil parameters in terms of soil erosion. Remote Sens. 2019, 11, 1106. [Google Scholar] [CrossRef]
- Mahmood, K.; Ul-Haq, Z.; Faizi, F.; Tariq, S.; Naeem, M.A.; Rana, A.D. Monitoring open dumping of municipal waste in Gujranwala, Pakistan using a combination of satellite based bio-thermal indicators and GIS analysis. Ecol. Indic. 2019, 107, 105613. [Google Scholar] [CrossRef]
- Khosravi, V.; Ardejani, F.D.; Gholizadeh, A.; Saberioon, M. Satellite imagery for monitoring and mapping soil chromium pollution in a mine waste dump. Remote Sens. 2021, 13, 1277. [Google Scholar] [CrossRef]
- Abd-El Monsef, H.; Smith, S.E. Integrating remote sensing, geographic information system, and analytical hierarchy process for hazardous waste landfill site selection. Arab. J. Geosci. 2019, 12, 155. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Guo, Y.; Jing, G.; Matsumoto, A. Circular economy implementation in railway systems beyond net zero. Front. Built Environ. 2023, 9, 1239740. [Google Scholar] [CrossRef]
- Ashori, A.; Tabarsa, T.; Amosi, F. Evaluation of using waste timber railway sleepers in wood-cement composite materials. Constr. Build. Mater. 2012, 27, 126–129. [Google Scholar] [CrossRef]
- Sainz-Aja, J.; Carrascal, I.; Polanco, J.A.; Thomas, C.; Sosa, I.; Casado, J.; Diego, S. Self-compacting recycled aggregate concrete using out-of-service railway superstructure wastes. J. Clean. Prod. 2019, 230, 945–955. [Google Scholar] [CrossRef]
- Chen, H.; Chow, C.L.; Lau, D. Developing green and sustainable concrete in integrating with different urban wastes. J. Clean. Prod. 2022, 368, 133057. [Google Scholar] [CrossRef]
- Qin, X.; Huang, X.; Li, Y.; Kaewunruen, S. Sustainable design framework for enhancing shear capacity in beams using recycled steel fiber-reinforced high-strength concrete. Constr. Build. Mater. 2024, 411, 134509. [Google Scholar] [CrossRef]
- Özçelikci, E.; Oskay, A.; Bayer, I.R.; Sahmaran, M. Eco-hybrid cement-based building insulation materials as a circular economy solution to construction and demolition waste. Cem. Concr. Compos. 2023, 141, 105149. [Google Scholar] [CrossRef]
- Fort, J.; Cerny, R. Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Manag. 2020, 118, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, W.; Yang, F.; Cao, T.; Wu, Z.; Lu, Y.; Wu, C. Study on resourceful treatment and carbon reduction intensity of metro shield slag: An example of a tunnel interval of Shenzhen line 13. Buildings 2023, 13, 2816. [Google Scholar] [CrossRef]
- Hoong, J.D.L.H.; Lux, J.; Mahieux, P.Y.; Turcry, P.; Aït-Mokhtar, A. Determination of the composition of recycled aggregates using a deep learning-based image analysis. Autom. Constr. 2020, 116, 103204. [Google Scholar] [CrossRef]
- Lux, J.; Hoong, J.D.L.H.; Mahieux, P.Y.; Turcry, P. Classification and estimation of the mass composition of recycled aggregates by deep neural networks. Comput. Ind. 2023, 148, 103889. [Google Scholar] [CrossRef]
- Liu, J.; Wu, P.; Jiang, Y.; Wang, X. Explore potential barriers of applying circular economy in construction and demolition waste recycling. J. Clean. Prod. 2021, 326, 129400. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Teuffel, P.; Cavdar, A.D.; Valta, O.; Tambovceva, T.; Bajare, D. Comparisons of stakeholders’ influences, inter-relationships, and obstacles for circular economy implementation on existing building sectors. Sci. Rep. 2024, 14, 11046. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Liu, T.; Li Hao, J.; Wu, W.; Gu, X. Towards a circular economy for construction and demolition waste management in China: Critical success factors. Sustain. Chem. Pharm. 2023, 35, 101226. [Google Scholar] [CrossRef]
- Ma, W.; Li Hao, J. Enhancing a circular economy for construction and demolition waste management in China: A stakeholder engagement and key strategy approach. J. Clean. Prod. 2024, 450, 141763. [Google Scholar] [CrossRef]
- Bao, Z.; Lu, W.; Chi, B.; Yuan, H.; Hao, J. Procurement innovation for a circular economy of construction and demolition waste: Lessons learnt from Suzhou, China. Waste Manag. 2019, 99, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, L.C.M.; Birkved, M.; Birgisdottir, H. Building design and construction strategies for a circular economy. Archit. Eng. Des. Manag. 2022, 18, 93–113. [Google Scholar] [CrossRef]
- Jemal, K.M.; Kabzhassarova, M.; Shaimkhanov, R.; Dikhanbayeva, D.; Turkyilmaz, A.; Durdyev, S.; Karaca, F. Facilitating circular economy strategies using digital construction tools: Framework development. Sustainability 2023, 15, 877. [Google Scholar] [CrossRef]
- Talla, A.; McIlwaine, S. Industry 4.0 and the circular economy: Using design-stage digital technology to reduce construction waste. Smart Sustain. Built Environ. 2024, 13, 179–198. [Google Scholar] [CrossRef]
- Ghufran, M.; Khan, K.I.A.; Ullah, F.; Nasir, A.R.; Al Alahmadi, A.A.; Alzaed, A.N.; Alwetaishi, M. Circular economy in the construction Industry: A step towards sustainable development. Buildings 2022, 12, 1004. [Google Scholar] [CrossRef]
- Adams, K.T.; Osmani, M.; Thorpe, T.; Thornback, J. Circular economy in construction: Current awareness, challenges and enablers. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2017, 170, 15–24. [Google Scholar] [CrossRef]
- Oggeri, C.; Fenoglio, T.M.; Vinai, R. Tunnel spoil classification and applicability of lime addition in weak formations for muck reuse. Tunn. Undergr. Space Technol. 2014, 44, 97–107. [Google Scholar] [CrossRef]
- Tasaki, T.; Hashimoto, S.; Moriguchi, Y. A GIS-based zoning of illegal dumping potential for efficient surveillance. Waste Manag. 2007, 27, 256–267. [Google Scholar] [CrossRef]
- Richter, A.; Ng, K.T.W.; Karimi, N. A data-driven technique applying GIS and remote sensing to rank locations for waste disposal site expansion. Resour. Conserv. Recycl. 2019, 149, 352–362. [Google Scholar] [CrossRef]
- Seror, N.; Portnov, B.A. Identifying areas under potential risk of illegal construction and demolition waste dumping using GIS tools. Waste Manag. 2018, 75, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Adamcová, D.; Barton, S.; Osinski, P.; Pasternak, G.; Podlasek, A.; Vaverková, M.D.; Koda, E. Analytical modelling of MSW landfill surface displacement based on GNSS monitoring. Sensors 2020, 20, 6264. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fu, H.; Liu, L.; Feng, G.; Wen, D.; Peng, X.; Ding, H. Continued monitoring and modeling of Xingfeng solid waste landfill settlement, China, based on multiplatform SAR images. Remote Sens. 2021, 13, 3210. [Google Scholar] [CrossRef]
- Qiao, N.; Duan, Y.; Wei, X.; Shi, X. Study on landslide monitoring experiment of underground chambers spoil area. IOP Conf. Ser. Earth Environ. Sci. 2020, 455, 012046. [Google Scholar] [CrossRef]
- Baiocchi, V.; Lelo, K.; De Luca, A. UAV for monitoring the settlement of a landfill. Eur. J. Remote Sens. 2019, 52 (Suppl. S3), 41–52. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, L.; Yin, Y.; Liu, X.; Li, B.; Ren, C.; Liu, D. Failure process and three-dimensional motions of mining-induced Jianshanying landslide in China observed by optical, LiDAR and SAR datasets. GISci. Remote Sens. 2023, 60, 1–23. [Google Scholar] [CrossRef]
- Iacoboaea, C.; Petrescu, F. Landfill monitoring using remote sensing: A case study of Glina, Romania. Waste Manag. Res. 2013, 31, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Mahendrarajah, P.; Shaker, A.; Faisal, K.; Luong, R.; Al-Ahmad, M. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites. Environ. Monit. Assess. 2014, 186, 8161–8173. [Google Scholar] [CrossRef]
- Nazari, R.; Alfergani, H.; Haas, F.; Karimi, M.E.; Fahad, M.G.R.; Sabrin, S.; Everett, J.; Bouaynaya, N.; Peters, R.W. Application of satellite remote sensing in monitoring elevated internal temperatures of landfills. Appl. Sci. 2020, 10, 6783. [Google Scholar] [CrossRef]
- Ferrier, G.; Rumsby, B.; Pope, R. Application of hyperspectral remote sensing data in the monitoring of the environmental impact of hazardous waste derived from abandoned mine sites. Geol. Soc. Lond. Spec. Publ. 2022, 283, 107–116. [Google Scholar] [CrossRef]
- Incekara, A.H.; Delen, A.; Seker, D.Z.; Goksel, C. Investigating the utility potential of low-cost unmanned aerial vehicles in the temporal monitoring of a landfill. ISPRS Int. J. Geo-Inf. 2019, 8, 31. [Google Scholar] [CrossRef]
- Gasperini, D. Potential and limitation of UAV for monitoring subsidence in municipal landfills. Int. J. Environ. Technol. Manag. 2014, 17, 55–64. [Google Scholar] [CrossRef]
- Mello, C.C.S.; Salim, D.H.C.; Simoes, G.F. UAV-based landfill operation monitoring: A year of volume and topographic measurements. Waste Manag. 2022, 137, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.R. A remote sensing and GIS-assisted spatial decision support system for hazardous waste site monitoring. Photogramm. Eng. Remote Sens. 2009, 75, 169–177. [Google Scholar] [CrossRef]
- Papale, L.G.; Guerrisi, G.; Santis, D.D.; Schiavon, G.; Frate, F.D. Satellite data potentialities in solid waste landfill monitoring: Review and case studies. Sensors 2023, 23, 3920. [Google Scholar] [CrossRef] [PubMed]
- Gül, Y.; Hastaoğlu, K.Ö.; Poyraz, F. Using the GNSS method assisted with UAV photogrammetry to monitor and determine deformations of a dump site of three open-pit marble mines in Eliktekke region, Amasya province, Turkey. Environ. Earth Sci. 2020, 79, 254. [Google Scholar] [CrossRef]
- Kundariya, N.; Mohanty, S.S.; Varjani, S.; Ngo, H.H.; Wong, J.W.C.; Taherzadeh, M.J.; Chang, J.S.; Ng, H.Y.; Kim, S.H.; Bui, X.T. A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresour. Technol. 2021, 342, 125982. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleki, M.; Consens, M.; Esmaeili, K. Ore-waste discrimination using supervised and unsupervised classification of hyperspectral images. Remote Sens. 2022, 14, 6335. [Google Scholar] [CrossRef]
- Gautam, S.; Bhardwaj, B.; Ramachandran, D. Spatio-temporal estimates of solid waste disposal in an urban city of India: A remote sensing and GIS approach. Environ. Technol. Innov. 2020, 18, 100624. [Google Scholar] [CrossRef]
- Biluca, J.; de Aguiar, C.R.; Trojan, F. Sorting of suitable areas for disposal of construction and demolition waste using GIS and ELECTRE TRI. Waste Manag. 2020, 114, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Joshi, L.M.; Bharti, R.K.; Singh, R.; Malik, P.K. Real-time monitoring of solid waste with customized hardware and Internet of Things. Comput. Electr. Eng. 2022, 102, 108111. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, F.; Lalit, B.; Fan, X.; Liu, Q. Construction solid waste landfills: Risk assessment and monitoring by fibre optic sensing technique. Geomat. Nat. Hazards Risk 2020, 12, 63–83. [Google Scholar] [CrossRef]
- Bošković, G.; Cvetanović, A.M.; Jovičić, N.; Jovanović, A.; Jovičić, M.; Milojević, S. Digital technologies for advancing future municipal solid waste collection services. In Digital Transformation and Sustainable Development in Cities and Organizations, 1st ed.; Theofanidis, F., Abidi, O., Erturk, A., Colbran, S., Coşkun, E., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 167–192. [Google Scholar] [CrossRef]
- GB/T 7930-2008; Specifications for Aerophotogrammetric Office Operation of 1:500 1:1 000 1:2 000 Topographic Maps. National Standardization Administration: Beijing, China, 2008.
Sensor | Band | Wavelength Range | Resolution (m) |
---|---|---|---|
Panchromatic multispectral camera | 1 | 0.45–0.90 | 2 |
2 | 0.45–0.52 | 8 | |
3 | 0.52–0.59 | ||
4 | 0.63–0.69 | ||
5 | 0.77–0.89 | ||
Multispectral camera | 6 | 0.45–0.52 | 16 |
7 | 0.52–0.59 | ||
8 | 0.63–0.69 | ||
9 | 0.77–0.89 |
Sub-Project | Excavation Volume | Fill Volume | Integrated Utilization Volume | Spoil Volume | Proportion of Spoil Volume |
---|---|---|---|---|---|
Roadbed | 11,008,300 | 1,270,800 | 7,719,900 | 2,017,600 | 14.75% |
Bridge | 5,213,100 | 1,992,900 | 2,688,200 | 532,000 | 3.89% |
Tunnel | 17,044,600 | 222,100 | 8,308,700 | 8,513,800 | 62.23% |
Station | 12,794,200 | 4,233,300 | 5,942,900 | 2,618,000 | 19.14% |
Large temporary facilities | 3,039,500 | 3,039,500 | 0.00 | 0.00 | 0.00% |
Total | 49,099,700 | 10,758,600 | 24,659,700 | 13,681,400 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Xia, B.; Guo, Y.; Yin, Y.; Chen, H. Comprehensive Monitoring of Construction Spoil Disposal Areas in High-Speed Railways Utilizing Integrated 3S Techniques. Appl. Sci. 2025, 15, 762. https://doi.org/10.3390/app15020762
Hu X, Xia B, Guo Y, Yin Y, Chen H. Comprehensive Monitoring of Construction Spoil Disposal Areas in High-Speed Railways Utilizing Integrated 3S Techniques. Applied Sciences. 2025; 15(2):762. https://doi.org/10.3390/app15020762
Chicago/Turabian StyleHu, Xiaodong, Bo Xia, Yongqi Guo, Yang Yin, and Huihua Chen. 2025. "Comprehensive Monitoring of Construction Spoil Disposal Areas in High-Speed Railways Utilizing Integrated 3S Techniques" Applied Sciences 15, no. 2: 762. https://doi.org/10.3390/app15020762
APA StyleHu, X., Xia, B., Guo, Y., Yin, Y., & Chen, H. (2025). Comprehensive Monitoring of Construction Spoil Disposal Areas in High-Speed Railways Utilizing Integrated 3S Techniques. Applied Sciences, 15(2), 762. https://doi.org/10.3390/app15020762