Design of a Dispersive 1064 nm Fiber Probe Raman Imaging Spectrometer and Its Application to Human Bladder Resectates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dispersive Raman Instrument with 1064 nm Excitation Laser
2.2. Data Analysis
2.3. Study Population
3. Results
3.1. K-Means Cluster Analysis of Tumor 3 and Control 5 Specimens
3.2. Overview of the Clustering Results of the Specimens
3.3. Variations of Raman Spectra of Tumor and Control Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heidkamp, J.; Scholte, M.; Rosman, C.; Manohar, S.; Fütterer, J.J.; Rovers, M.M. Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review. Int. J. Cancer 2021, 149, 635–645. [Google Scholar] [CrossRef]
- Krafft, C.; Popp, J. Opportunities of optical and spectral technologies in intraoperative histopathology. Optica 2023, 10, 214–231. [Google Scholar] [CrossRef]
- Lee, M.; Herrington, C.S.; Ravindra, M.; Sepp, K.; Davies, A.; Hulme, A.N.; Brunton, V.G. Recent advances in the use of stimulated raman scattering in histopathology. Analyst 2021, 146, 789–802. [Google Scholar] [CrossRef]
- Zhang, C.; Aldana-Mendoza, J.A. Coherent raman scattering microscopy for chemical imaging of biological systems. J. Phys. Photonics 2021, 3, 032002. [Google Scholar] [CrossRef]
- Kögler, M.; Heilala, B. Time-gated raman spectroscopy—A review. Meas. Sci. Technol. 2020, 32, 012002. [Google Scholar] [CrossRef]
- Korinth, F.; Shaik, T.A.; Popp, J.; Krafft, C. Assessment of shifted excitation raman difference spectroscopy in highly fluorescent biological samples. Analyst 2021, 146, 6760–6767. [Google Scholar] [CrossRef]
- Sowoidnich, K.; Towrie, M.; Maiwald, M.; Sumpf, B.; Matousek, P. Shifted excitation raman difference spectroscopy with charge-shifting charge-coupled device (ccd) lock-in detection. Appl. Spectrosc. 2019, 73, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Kozik, A.; Pavlova, M.; Petrov, I.; Bychkov, V.; Kim, L.; Dorozhko, E.; Cheng, C.; Rodriguez, R.D.; Sheremet, E. A review of surface-enhanced raman spectroscopy in pathological processes. Anal. Chim. Acta 2021, 1187, 338978. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.; Boisen, A.; Brolo, A.G. Present and future of surface-enhanced raman scattering. ACS Nano 2019, 14, 28–117. [Google Scholar] [CrossRef]
- Ye, J.; Tian, Z.; Wei, H.; Li, Y. Baseline correction method based on improved asymmetrically reweighted penalized least squares for the raman spectrum. Appl. Opt. 2020, 59, 10933–10943. [Google Scholar] [CrossRef]
- Barton, B.; Thomson, J.; Lozano Diz, E.; Portela, R. Chemometrics for raman spectroscopy harmonization. Appl. Spectrosc. 2022, 76, 1021–1041. [Google Scholar] [CrossRef]
- Schrader, B.; Dippel, B.; Fendel, S.; Keller, S.; Löchte, T.; Riedl, M.; Schulte, R.; Tatsch, E. Nir ft raman spectroscopy—a new tool in medical diagnostics. J. Mol. Struct. 1997, 408–409, 23–31. [Google Scholar] [CrossRef]
- Chao, K.; Dhakal, S.; Qin, J.; Kim, M.; Peng, Y. A 1064 nm dispersive raman spectral imaging system for food safety and quality evaluation. Appl. Sci. 2018, 8, 431. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, Z.; Ye, L.; Zhang, X.; Xing, Y.; Zhu, Q.; Yang, F.; Jiang, G.; Chen, Z.; Chen, K.; et al. Preliminary assessment of a portable raman spectroscopy system for post-operative urinary stone analysis. World J. Urol. 2022, 40, 229–235. [Google Scholar] [CrossRef]
- Worldwide Cancer Data. Available online: https://www.wcrf.org/cancer-trends/worldwide-cancer-data (accessed on 12 January 2024).
- Lenis, A.T.; Lec, P.M.; Chamie, K. Bladder cancer: A review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef]
- Krafft, C.; Popp, J.; Bronsert, P.; Miernik, A. Raman spectroscopic imaging of human bladder resectates towards intraoperative cancer assessment. Cancers 2023, 15, 2162. [Google Scholar] [CrossRef]
- Cordero, E.; Rüger, J.; Marti, D.; Mondol, A.S.; Hasselager, T.; Mogensen, K.; Hermann, G.G.; Popp, J.; Schie, I.W. Bladder tissue characterization using probe-based raman spectroscopy: Evaluation of tissue heterogeneity and influence on the model prediction. J. Biophotonics 2020, 13, e201960025. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Quan, S.; Xu, Q. High-precision bladder cancer diagnosis method: 2D raman spectrum figures based on maintenance technology combined with automatic weighted feature fusion network. Anal. Chim. Acta 2023, 1282, 341908. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, F.; Yang, C.; Jiang, H. Use of in vivo raman spectroscopy and cryoablation for diagnosis and treatment of bladder cancer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 308, 123707. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Bolanos, J.D.; Shaik, T.A.; Popp, J.; Krafft, C. Hyperspectral Package for Spectroscopists (Spectramap). 2021. Available online: https://pypi.org/project/spectramap/ (accessed on 14 January 2024).
- Zhang, Z.-M.; Chen, S.; Liang, Y.-Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Schafer, R.W. What is a savitzky-golay filter? [lecture notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Ospanov, A.; Romanishkin, I.; Savelieva, T.; Kosyrkova, A.; Shugai, S.; Goryaynov, S.; Pavlova, G.; Pronin, I.; Loschenov, V. Optical differentiation of brain tumors based on raman spectroscopy and cluster analysis methods. Int. J. Mol. Sci. 2023, 24, 14432. [Google Scholar] [CrossRef]
- Schie, I.W.; Krafft, C.; Popp, J. Cell classification with low-resolution raman spectroscopy (lrrs). J. Biophotonics 2016, 9, 994–1000. [Google Scholar] [CrossRef]
- Kumamoto, Y.; Mochizuki, K.; Hashimoto, K.; Harada, Y.; Tanaka, H.; Fujita, K. High-throughput cell imaging and classification by narrowband and low-spectral-resolution raman microscopy. J. Phys. Chem. B 2019, 123, 2654–2661. [Google Scholar] [CrossRef] [PubMed]
- Krafft, C.; Alipour Didehroshan, M.; Recknagel, P.; Miljkovic, M.; Bauer, M.; Popp, J. Crisp and soft algorithms visualizes cell nuclei in raman images of liver tissue sections. Vib. Spectrosc. 2011, 55, 90–100. [Google Scholar] [CrossRef]
- Kallepitis, C.; Bergholt, M.S.; Mazo, M.M.; Leonardo, V.; Skaalure, S.C.; Maynard, S.A.; Stevens, M.M. Quantitative volumetric raman imaging of three dimensional cell cultures. Nat. Commun. 2017, 8, 14843. [Google Scholar] [CrossRef]
- Lin, L.; He, H.; Xue, R.; Zhang, Y.; Wang, Z.; Nie, S.; Ye, J. Direct and quantitative assessments of near-infrared light attenuation and spectroscopic detection depth in biological tissues using surface-enhanced raman scattering. Med-X 2023, 1, 9. [Google Scholar] [CrossRef]
- Lasch, P.; Naumann, D. Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim. Biophys. Acta (BBA)—Biomembr. 2006, 1758, 814–829. [Google Scholar] [CrossRef] [PubMed]
- Delrue, C.; Speeckaert, M.M. The potential applications of raman spectroscopy in kidney diseases. J. Pers. Med. 2022, 12, 1644. [Google Scholar] [CrossRef]
- Carmona, P.; Bellanato, J.; Escolar, E. Infrared and raman spectroscopy of urinary calculi: A review. Biospectroscopy 1997, 3, 331–346. [Google Scholar] [CrossRef]
- Cui, X.; Zhao, Z.; Zhang, G.; Chen, S.; Zhao, Y.; Lu, J. Analysis and classification of kidney stones based on raman spectroscopy. Biomed. Opt. Express 2018, 9, 4175–4183. [Google Scholar] [CrossRef] [PubMed]
- Kodati, V.R.; Tu, A.T. Raman spectroscopic identification of cystine-type kidney stone. Appl. Spectrosc. 1990, 44, 837–839. [Google Scholar] [CrossRef]
- Kodati, V.R.; Tomasi, G.E.; Turumin, J.L.; Tu, A.T. Raman spectroscopic identification of calcium-oxalate-type kidney stone. Appl. Spectrosc. 1990, 44, 1408–1411. [Google Scholar] [CrossRef]
- Kodati, V.R.; Tomasi, G.E.; Turumin, J.L.; Tu, A.T. Raman spectroscopic identification of phosphate-type kidney stones. Appl. Spectrosc. 1991, 45, 581–583. [Google Scholar] [CrossRef]
- Schütz, J.; Miernik, A.; Brandenburg, A.; Schlager, D. Experimental evaluation of human kidney stone spectra for intraoperative stone-tissue-instrument analysis using autofluorescence. J. Urol. 2019, 201, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kocademir, M.; Kumru, M.; Gölcük, K.; Suarez-Ibarrola, R.; Miernik, A. Fluorescence reduction in raman spectroscopy by chemical bleaching on renal stones. J. Appl. Spectrosc. 2020, 87, 282–288. [Google Scholar] [CrossRef]
- Selvaraju, R.; Raja, A.; Thiruppathi, G. Ft-raman spectral analysis of human urinary stones. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 99, 205–210. [Google Scholar] [CrossRef]
- Tonannavar, J.; Deshpande, G.; Yenagi, J.; Patil, S.B.; Patil, N.A.; Mulimani, B.G. Identification of mineral compositions in some renal calculi by ft raman and ir spectral analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 154, 20–26. [Google Scholar] [CrossRef]
- Castiglione, V.; Sacré, P.-Y.; Cavalier, E.; Hubert, P.; Gadisseur, R.; Ziemons, E. Raman chemical imaging, a new tool in kidney stone structure analysis: Case-study and comparison to fourier transform infrared spectroscopy. PLoS ONE 2018, 13, e0201460. [Google Scholar] [CrossRef]
- Galli, R.; Uckermann, O.; Andresen, E.F.; Geiger, K.D.; Koch, E.; Schackert, G.; Steiner, G.; Kirsch, M. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues. PLoS ONE 2014, 9, e110295. [Google Scholar] [CrossRef]
- Matthäus, C.; Dochow, S.; Bergner, G.; Lattermann, A.; Romeike, B.; Marple, E.; Krafft, C.; Dietzek, B.; Brehm, B.; Popp, J. In vivo characterization of atherosclerotic plaque depositions by raman-probe spectroscopy and in vitro cars microscopic imaging on a rabbit model. Anal. Chem. 2012, 84, 7845–7851. [Google Scholar] [CrossRef] [PubMed]
Specimen | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Non-tumor | L, T | L, T | L, N | C | L, C | L. C | C | - | L, C | C |
Non-tumor | L, T | T | L, T | L, C | L, C | L, C | C | C | L, C | L, C |
Tumor | N | T | T | - | N | T | C | - | T | C |
Tumor | N | T, L, N | T | T, L | T, L, N | T | T | - | T, L | L, N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Bolaños, J.D.; Shaik, T.A.; Miernik, A.; Popp, J.; Krafft, C. Design of a Dispersive 1064 nm Fiber Probe Raman Imaging Spectrometer and Its Application to Human Bladder Resectates. Appl. Sci. 2024, 14, 4726. https://doi.org/10.3390/app14114726
Muñoz-Bolaños JD, Shaik TA, Miernik A, Popp J, Krafft C. Design of a Dispersive 1064 nm Fiber Probe Raman Imaging Spectrometer and Its Application to Human Bladder Resectates. Applied Sciences. 2024; 14(11):4726. https://doi.org/10.3390/app14114726
Chicago/Turabian StyleMuñoz-Bolaños, Juan David, Tanveer Ahmed Shaik, Arkadiusz Miernik, Jürgen Popp, and Christoph Krafft. 2024. "Design of a Dispersive 1064 nm Fiber Probe Raman Imaging Spectrometer and Its Application to Human Bladder Resectates" Applied Sciences 14, no. 11: 4726. https://doi.org/10.3390/app14114726