A Method Based on an Autoencoder for Anomaly Detection in DC Motor Body Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anomaly Dataset for DC Motor Body Temperature
2.2. Anomaly Detection Methods
2.2.1. Autoencoder
2.2.2. Three-Sigma Outlier (3-SgOut)
3. System Overview for Autoencoder-Based Anomaly Detection
4. Performance Evaluation
5. Experiments
5.1. Experiment Setup
5.2. Autoencoder for Anomaly Detection
5.3. Three-Sigma Outlier (3-SgOut) for Anomaly Detection
6. Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Bayraktar, C.; Gökçen, H. Comparison of classification algorithms for anomaly detection in energy optimization of high rack storage systems. Int. J. Manag. Inf. Syst. Comput. Sci. 2020, 4, 89–109. [Google Scholar]
- Zhao, J.; Liu, K.; Wang, W.; Liu, Y. Adaptive fuzzy clustering based anomaly data detection in energy system of steel industry. Inf. Sci. 2014, 259, 335–345. [Google Scholar] [CrossRef]
- Das, T.K.; Adepu, S.; Zhou, J. Anomaly detection in industrial control systems using logical analysis of data. Comput. Secur. 2020, 96, 101935. [Google Scholar] [CrossRef]
- Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Appl. Energy 2021, 287, 116601. [Google Scholar] [CrossRef]
- Theumer, P.; Zeiser, R.; Trauner, L.; Reinhart, G. Anomaly detection on industrial time series for retaining energy efficiency. Procedia CIRP 2021, 99, 33–38. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Mu, S.; Wang, D.; Kim, H.; Serikawa, S. Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J. 2017, 5, 2315–2322. [Google Scholar] [CrossRef]
- Hiruta, T.; Maki, K.; Kato, T.; Umeda, Y. Unsupervised learning based diagnosis model for anomaly detection of motor bearing with current data. Procedia CIRP 2021, 98, 336–341. [Google Scholar] [CrossRef]
- Hızarcı, B.; Ümütlü, R.C.; Kıral, Z.; Öztürk, H. Fault severity detection of a worm gearbox based on several feature extraction methods through a developed condition monitoring system. SN Appl. Sci. 2021, 3, 129. [Google Scholar] [CrossRef]
- Jami, A.; Heyns, P.S. Impeller fault detection under variable flow conditions based on three feature extraction methods and artificial neural networks. J. Mech. Sci. Technol. 2018, 32, 4079–4087. [Google Scholar] [CrossRef]
- Takiddin, A.; Ismail, M.; Zafar, U.; Serpedin, E. Deep autoencoder-based anomaly detection of electricity theft cyberattacks in smart grids. IEEE Syst. J. 2022, 16, 4106–4117. [Google Scholar] [CrossRef]
- Givnan, S.; Chalmers, C.; Fergus, P.; Ortega-Martorell, S.; Whalley, T. Anomaly Detection Using Autoencoder Reconstruction upon Industrial Motors. Sensors 2022, 22, 3166. [Google Scholar] [CrossRef] [PubMed]
- Homayouni, H.; Ghosh, S.; Ray, I.; Gondalia, S.; Duggan, J.; Kahn, M.G. An autocorrelation-based lstm-autoencoder for anomaly detection on time-series data. In Proceedings of the IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5068–5077. [Google Scholar]
- Kirchgässner, W.; Wallscheid, O.; Böcker, J. Estimating electric motor temperatures with deep residual machine learning. IEEE Trans. Power Electron. 2020, 36, 7480–7488. [Google Scholar] [CrossRef]
- Nandi, S.; Toliyat, H.A.; Li, X. Condition monitoring and fault diagnosis of electrical motors—A review. IEEE Trans. Energy Convers. 2005, 20, 719–729. [Google Scholar] [CrossRef]
- Abu Saad, S. The Untilisation of Information Available in a Sensorless Control System of an AC Induction Motor for Condition Monitoring. Ph.D. Thesis, University of Huddersfield, Huddersfield, UK, 2015. [Google Scholar]
- Chow, J.K.; Su, Z.; Wu, J.; Tan, P.S.; Mao, X.; Wang, Y.-H. Anomaly detection of defects on concrete structures with the convolutional autoencoder. Adv. Eng. Inform. 2020, 45, 101105. [Google Scholar] [CrossRef]
- An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18. [Google Scholar]
- Chen, Z.; Yeo, C.K.; Lee, B.S.; Lau, C.T. Autoencoder-based network anomaly detection. In Proceedings of the Wireless Telecommunications Symposium (WTS), Phoenix, AZ, USA, 17–20 April 2018; pp. 1–5. [Google Scholar]
- Siddalingappa, R.; Kanagaraj, S. Anomaly detection on medical images using autoencoder and convolutional neural network. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 148–156. [Google Scholar] [CrossRef]
- Kasunic, M.; McCurley, J.; Goldenson, D.; Zubrow, D. An Investigation of Techniques for Detecting Data Anomalies in Earned Value Management Data; Software Engineering Institute: Pittsburgh, PA, USA, 2011. [Google Scholar]
- Mirzaee, S.; Motagh, M.; Arefi, H.; Nooryazdan, M. Classification of agricultural fields using time series of dual polarimetry TerraSAR-X images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Kohavi, R.; Provost, F. Glossary of terms journal of machine learning. Mach. Learn 1998, 30, 271–274. [Google Scholar]
- Abdoli, M.; Akbari, M.; Shahrabi, J. Bagging Supervised Autoencoder Classifier for Credit Scoring. Expert Syst. Appl. 2023, 213, 118991. [Google Scholar] [CrossRef]
- MATLAB; R2022a; The MathWorks Inc.: Natick, MA, USA, 2022.
- Moller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
Actual | |||
---|---|---|---|
Abnormal (Faulty) | Normal | ||
Predicted | Abnormal (Faulty) | TP (True Positive) | FP (False Positive) |
Normal | FN (False Negative) | TN (True Negative) |
Actual | |||
---|---|---|---|
Abnormal (Faulty) | Normal | ||
Predicted | Abnormal (Faulty) | 2089 (TP) | 0 (FP) |
Normal | 73 (FN) | 287,069 (TN) |
Actual | |||
---|---|---|---|
Abnormal (Faulty) | Normal | ||
Predicted | Abnormal (Faulty) | 389 (TP) | 0 (FP) |
Normal | 1773 (FN) | 287,069 (TN) |
Accuracy | Recall | Precision | |
---|---|---|---|
AE | 99.97% | 96.62% | 100% |
3-SgOut | 99.39% | 17.99% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demircioğlu, E.H.; Yılmaz, E. A Method Based on an Autoencoder for Anomaly Detection in DC Motor Body Temperature. Appl. Sci. 2023, 13, 8701. https://doi.org/10.3390/app13158701
Demircioğlu EH, Yılmaz E. A Method Based on an Autoencoder for Anomaly Detection in DC Motor Body Temperature. Applied Sciences. 2023; 13(15):8701. https://doi.org/10.3390/app13158701
Chicago/Turabian StyleDemircioğlu, Emine Hümeyra, and Ersen Yılmaz. 2023. "A Method Based on an Autoencoder for Anomaly Detection in DC Motor Body Temperature" Applied Sciences 13, no. 15: 8701. https://doi.org/10.3390/app13158701