Smart Dairy Farming—The Potential of the Automatic Monitoring of Dairy Cows’ Behaviour Using a 360-Degree Camera
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neave, H.W.; Lomb, J.; Weary, D.M.; LeBlanc, S.J.; Huzzey, J.M.; von Keyserlingk, M.A.G. Behavioral changes before metritis diagnosis in dairy cows. J. Dairy Sci. 2018, 101, 4388–4399. [Google Scholar] [CrossRef] [PubMed]
- Miciński, J.; Zwierzchowski, G.; Barański, W.; Gołębiowska, M.; Maršálek, M. Locomotor activity and daily milk yield of dairy cows during the perioestrous period in successive lactations. J. Agrobiol. 2010, 27, 111–119. [Google Scholar] [CrossRef]
- Tucker, C.B.; Jensen, M.B.; de Passille, A.M.; Hanninen, L.; Rushen, J. Invited review: Lying time and the welfare of dairy cows. J. Dairy Sci. 2021, 104, 20–46. [Google Scholar] [CrossRef]
- Knight, C.H. Review: Sensor techniques in ruminants: More than fitness trackers. Animal 2020, 14, s187–s195. [Google Scholar] [CrossRef] [PubMed]
- Stygar, A.H.; Gomez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef]
- Van Hertem, T.; Schlageter Tello, A.; Viazzi, S.; Steensels, M.; Bahr, C.; Romanini, C.E.B.; Lokhorst, K.; Maltz, E.; Halachmi, I.; Berckmans, D. Implementation of an automatic 3d vision monitor for dairy cow locomotion in a commercial farm. Biosyst. Eng. 2018, 173, 166–175. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.D.; Liu, G. Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase. J. Dairy Sci. 2020, 103, 10628–10638. [Google Scholar] [CrossRef]
- Wu, D.; Wu, Q.; Yin, X.; Jiang, B.; Wang, H.; He, D.; Song, H. Lameness detection of dairy cows based on the yolov3 deep learning algorithm and a relative step size characteristic vector. Biosyst. Eng. 2020, 189, 150–163. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Hsu, J.-T.; Ding, S.-T.; Rustia, D.J.A.; Lin, T.-T. Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system. Biosyst. Eng. 2020, 199, 97–108. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Han, M.; Song, L.; Shang, Y.; Zhang, X.; Song, H. Using a cnn-lstm for basic behaviors detection of a single dairy cow in a complex environment. Comput. Electron. Agric. 2021, 182, 106016. [Google Scholar] [CrossRef]
- Porto, S.M.C.; Arcidiacono, C.; Anguzza, U.; Cascone, G. The automatic detection of dairy cow feeding and standing behaviours in free-stall barns by a computer vision-based system. Biosyst. Eng. 2015, 133, 46–55. [Google Scholar] [CrossRef]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer vision system for measuring individual cow feed intake using rgb-d camera and deep learning algorithms. Comput. Electron. Agric. 2020, 172, 105345. [Google Scholar] [CrossRef]
- Guo, Y.; He, D.; Chai, L. A machine vision-based method for monitoring scene-interactive behaviors of dairy calf. Animals 2020, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Bernes, G.; Hetta, M.; Karlsson, J. Tracking and analysing social interactions in dairy cattle with real-time locating system and machine learning. J. Syst. Archit. 2021, 116, 102139. [Google Scholar] [CrossRef]
- Wurtz, K.; Camerlink, I.; D’Eath, R.B.; Fernandez, A.P.; Norton, T.; Steibel, J.; Siegford, J. Recording behaviour of indoor-housed farm animals automatically using machine vision technology: A systematic review. PLoS ONE 2019, 14, e0226669. [Google Scholar] [CrossRef]
- Gravemeier, L.S.; Dittmer, A.; Jakob, M.; Kümper, D.; Thomas, O. Conceptualizing a Holistic Smart Dairy Farming System—Leveraging Sensor Fusion and Ai to the Benefit of Humans and Animals; 43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme., Bonn, 13.-14.02.2023; Gesellschaft für Informatik e.V.: Bonn, Germany, 2023; pp. 77–88. [Google Scholar]
- Kurras, F.; Gravemeier, L.S.; Dittmer, A.; Kümper, D.; Jakob, M. Automatic monitoring of dairy cows’ lying behaviour using a computer vision system in open barns. Agron. Res. 2023, 21, 482–493. [Google Scholar]
- Kashiha, M.A.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Tuyttens, F.; Berckmans, D. Automatic Monitoring of Pig Activity Using Image Analysis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 555–563. [Google Scholar]
- DeVries, T.J.A.; von Keyserlingk, M.A.G. Time of feed delivery affects the feeding and lying patterns of dairy cows. J. Dairy Sci. 2005, 88, 625–631. [Google Scholar] [CrossRef]
- Albright, J.L. Feeding behavior of dairy cattle. J. Dairy Sci. 1993, 76, 485–498. [Google Scholar] [CrossRef]
- Wierenga, H.K.; Hopster, H. The significance of cubicles for the behavior of dairy-cows. Appl. Anim. Behav. Sci. 1990, 26, 309–337. [Google Scholar] [CrossRef]
- Cook, N.B.; Mentink, R.L.; Bennett, T.B.; Burgi, K. The effect of heat stress and lameness on time budgets of lactating dairy cows. J. Dairy Sci. 2007, 90, 1674–1682. [Google Scholar] [CrossRef]
- Lovendahl, P.; Chagunda, M.G. On the use of physical activity monitoring for estrus detection in dairy cows. J. Dairy Sci. 2010, 93, 249–259. [Google Scholar] [CrossRef] [PubMed]
Behaviour | Presumed Percentage of the Behaviour (p in %) | Absolute Confidence Interval (f′ in %) | Number of Required Observations (n) |
---|---|---|---|
Lying | 50 | 2.5 | 1.537 |
Lying down process | 0.5 | 2.5 | 31 |
Standing up process | 0.5 | 2.5 | 31 |
Standing | 23 | 2.5 | 1.089 |
Eating | 25 | 2.5 | 1.153 |
Milking | 1 | 2.5 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurras, F.; Jakob, M. Smart Dairy Farming—The Potential of the Automatic Monitoring of Dairy Cows’ Behaviour Using a 360-Degree Camera. Animals 2024, 14, 640. https://doi.org/10.3390/ani14040640
Kurras F, Jakob M. Smart Dairy Farming—The Potential of the Automatic Monitoring of Dairy Cows’ Behaviour Using a 360-Degree Camera. Animals. 2024; 14(4):640. https://doi.org/10.3390/ani14040640
Chicago/Turabian StyleKurras, Friederike, and Martina Jakob. 2024. "Smart Dairy Farming—The Potential of the Automatic Monitoring of Dairy Cows’ Behaviour Using a 360-Degree Camera" Animals 14, no. 4: 640. https://doi.org/10.3390/ani14040640