The Use of Pulmonary Arterial Pressure (PAP) for Improved Beef Cattle Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. History
3. Economic Impact
4. Increased Susceptibility of HAD in Bovine
5. Measuring Pulmonary Arterial Pressure
6. Interpreting PAP Scores
7. Factors Impacting PAP Score Variations
8. Concerns at Moderate Elevations
9. Alternative Methods of Measuring PAP
10. Inheritance of PAP
11. PAP Scores as an EPD
12. Relationship between PAP Scores and Economically Relevant Traits
12.1. PAP Scores and Gestation Length
12.2. PAP Scores and Birth Weight
12.3. PAP Scores and Weaning Weight
12.4. PAP Scores and Yearling Weight
12.5. PAP Scores and Carcass Traits
13. Future Research
14. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bovine High-Mountain Disease. Available online: https://www.merckvetmanual.com/circulatory-system/bovine-high-mountain-disease/bovine-high-mountain-disease (accessed on 17 July 2024).
- Holt, T.N.; Callan, R.J. Pulmonary arterial pressure testing for high mountain disease in cattle. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 575–596. [Google Scholar] [CrossRef]
- Markel, C.D. Characterizing Effects of Management Strategy and Degree of Pulmonary Hypertension on Live Growth Performance, Carcass Quality, and Respiratory Microbiome of Finishing Beef Cattle. Master’s Thesis, University of Wyoming, Laramie, WY, USA, 2023. [Google Scholar]
- Glover, G.H.; Newsom, I.E. Brisket Disease: Dropsy of High Altitudes; Agricultural Experiment Station of the Agricultural College of Colorado: Fort Collins, CO, USA, 1914; Volume 204. [Google Scholar]
- De Morais, H.A.; Schwartz, S.D. Pathophysiology of heart failure. In Textbook of Veterinary Internal Medicine, 6th ed.; Ettinger, S.J., Feldman, E.C., Eds.; Saunders Elsevier: St Louis, MO, USA, 2005; pp. 914–940. [Google Scholar]
- Ivany, J.M.; Illanes, O.G. Congestive heart failure due to epicardial lymphosarcoma in a Holstein cow. Can. Vet. J. 1999, 40, 819–820. [Google Scholar] [PubMed]
- Shirley, K.L.; Beckman, D.W.; Garrick, D.J. Inheritance of pulmonary arterial pressure in Angus cattle and its correlation with growth. Anim. Sci. J. 2008, 86, 815–819. [Google Scholar] [CrossRef]
- Enns, R.M.; Brinks, J.S.; Bourdon, R.M.; Field, T.G. Heritability of pulmonary arterial pressure in Angus cattle. In Proceedings of the Western Section, American Society of Animal Science, Phoenix, AZ, USA, 8–10 July 1992; p. 112. [Google Scholar]
- Cockrum, R.R.; Zeng, X.; Berge, N.F.; Neary, J.M.; Garry, F.B.; Holt, T.; Blackburn, H.D.; Thomas, S.; Speidel, S.E.; Garrick, D.J.; et al. Angus cattle at high altitude: Genetic relationships and initial genome-wide association analysis of pulmonary arterial pressure. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Rhodes, J. Comparative physiology of hypoxic pulmonary hypertension: Historical clues from brisket disease. J. Appl. Physiol. 2005, 98, 1092–1100. [Google Scholar] [CrossRef]
- Williams, J.L.; Bertrand, J.K.; Misztal, I.; Łukaszewicz, M. Genotype by environment interaction for growth due to altitude in United States Angus cattle. Anim. Sci. J. 2012, 90, 2152–2158. [Google Scholar] [CrossRef]
- Heath, D.; Castillo, Y.; Arias-Stella, J.; Harris, P. The small pulmonary arteries of the llama and other domestic animals native to high altitudes. Cardiovasc. Res. 1969, 3, 75–78. [Google Scholar] [CrossRef]
- Alexander, A.; Jensen, R. Pulmonary Vascular Pathology of Bovine High Mountain Disease. Am. J. Vet. Res. 1963, 24, 1098–1111. [Google Scholar] [PubMed]
- Veit, H.; Farrell, R. The anatomy and physiology of the bovine respiratory system relating to pulmonary disease. Cornell Vet. 1978, 68, 555–581. [Google Scholar]
- Alexander, A. The bovine lung: Normal vascular histology and vascular lesions in high mountain disease. Respiration 1962, 19, 528–542. [Google Scholar] [CrossRef]
- Speidel, S.E.; Thomas, M.G.; Holt, T.N.; Enns, R.M. Evaluation of the sensitivity of pulmonary arterial pressure to elevation using a reaction norm model in Angus Cattle. Anim. Sci. J. 2020, 98, skaa129. [Google Scholar] [CrossRef]
- Will, D.H.; Horrell, J.F.; Reeves, J.T.; Alexander, A.F. Influence of altitude and age on pulmonary arterial pressure in cattle. Proc. Soc. Exp. Biol. Med. 1975, 150, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Neary, J.M.; Garry, F.B.; Holt, T.N.; Thomas, M.G.; Enns, R.M. Mean pulmonary arterial pressures in Angus steers increase from cow–calf to feedlot–finishing phases. Anim. Sci. J. 2015, 93, 3854–3861. [Google Scholar] [CrossRef]
- Ahola, J.; Enns, R.; Holt, T. Examination of potential methods to predict pulmonary arterial pressure score in yearling beef cattle. Anim. Sci. J. 2006, 84, 1259–1264. [Google Scholar] [CrossRef]
- Crawford, N.F.; Enns, R.M.; Speidel, S.E.; LaShell, B.; Holt, T.N.; Thomas, M.G. Case Study: Factors influencing pulmonary arterial pressure in cattle of the San Juan Basin Research Center 4-Corners Bull Test data. Prof. Anim. Sci. 2017, 33, 387–392. [Google Scholar] [CrossRef]
- American Simmental Association. Beef Briefs: History of the Simmental Breed; American Simmental Association: Bozeman, MT, USA, 2014. [Google Scholar]
- González-Murray, R.A.; Sánchez-Castro, M.A.; Thomas, M.G.; Speidel, S.E.; Enns, R.M. Heterosis and its potential influence on pulmonary arterial pressure in beef cattle. Transl. Anim. Sci. 2020, 4 (Suppl. S1), S118–S121. [Google Scholar] [CrossRef] [PubMed]
- Krehbiel, B.C.; Thomas, M.G.; Speidel, S.E.; Enns, R.M.; Blackburn, H.D. Genetic structure of Angus and Salers in relation to SNP associated with pulmonary arterial pressure. Anim. Sci. J. 2017, 95 (Suppl. S4), 87–88. [Google Scholar] [CrossRef]
- Moore, L.G.; Reeves, J.T.; Will, D.H.; Grover, R.F. Pregnancy-induced pulmonary hypertension in cows susceptible to high mountain disease. J. Appl. Physiol. 1979, 46, 184–188. [Google Scholar] [CrossRef]
- Will, D.H.; McMurtry, I.F.; Reeves, J.T.; Grover, R.F. Cold-induced pulmonary hypertension in cattle. J. Appl. Physiol. 1978, 45, 469–473. [Google Scholar] [CrossRef]
- James, L.F.; Panter, K.E.; Broquist, H.P.; Hartley, W.J. Swainsonine-induced high mountain disease in calves. Vet. Hum. Toxicol. 1991, 33, 217–219. [Google Scholar]
- Thomas, M.G.; Krafsur, G.M.; Holt, T.N.; Enns, R.M.; Speidel, S.E.; Garry, F.B.; Canovas, A.; Medrano, J.M.; Brown, R.D.; Stenmark, K.R.; et al. Genetics of Brisket Disease in Beef Cattle: A Not So High Altitude Problem. Proc. Assoc. Advmt. Anim. Breed. Genet. 2017, 22, 293–300. [Google Scholar]
- Thomas, M.G.; Neary, J.M.; Krafsur, G.M.; Holt, T.N.; Enns, R.M.; Speidel, S.E.; Garry, F.B.; Canovas, A.; Medrano, J.F.; Brown, R.D.; et al. Pulmonary Hypertension (PH) in Beef Cattle: Complicated Threat to Health and Productivity in Multiple Beef Industry Segments. In Certified Angus Beef (CAB) White Paper; Certified Angus Beef: Wooster, OH, USA, 2018. [Google Scholar]
- Moxley, R.A.; Smith, D.R.; Grotelueschen, D.M.; Edwards, T.; Steffen, D.J. Investigation of congestive heart failure in beef cattle in a feedyard at a moderate altitude in western Nebraska. J. Vet. Diagn. Investig. 2019, 31, 509–522. [Google Scholar] [CrossRef]
- Ganong, W.F. Review of Medical Physiology; McGraw-Hill Book Co.: New York, NY, USA, 2001. [Google Scholar]
- Cueva, S. Blood Oxygen Transport in Cattle “Susceptible” and “Resistant” to High Mountain (Brisket) Disease. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 1967. [Google Scholar]
- Card, C.S. The Bovine Erythron during Hypoxic Stress. Ph.D. Dissertation, Colorado State University, Fort Collins, CO, USA, 1977. [Google Scholar]
- Crawford, N.F.; Thomas, M.G.; Holt, T.N.; Speidel, S.E.; Enns, R.M. Heritabilities and genetic correlations of pulmonary arterial pressure and performance traits in Angus cattle at high altitude. Anim. Sci. J. 2016, 94, 4483–4490. [Google Scholar] [CrossRef] [PubMed]
- DeNise, S.K.; Torabi, M.; Ray, D.E.; Rice, R. Genetic parameter estimates for preweaning traits of beef cattle in a stressful environment. Anim. Sci. J. 1988, 66, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Neary, J.M. Epidemiological, Physiological and Genetic Risk Factors Associated with Congestive Heart Failure and Mean Pulmonary Arterial Pressure in Cattle. Ph.D. Dissertation, Colorado State University, Fort Collins, CO, USA, 2014. [Google Scholar]
- Ryans, K.; Research PAP EPD Launched by Angus Genetics Inc. The Genetic Tool Will Allow Producers to More Easily Identify Cattle Less Susceptible to High Altitude Disease; Mefford, C., Ed.; American Angus Association: St. Joesph, MO, USA, 2019. [Google Scholar]
- Geiss, L.; Culbertson, R. Multibreed PAP EPD Released. In Colorado State University (CSU) and International Genetic Solutions (IGS) Partners Provide a Tool to Identify Cattle Less Susceptible to Brisket Disease; HerdBook: Bozeman, MT, USA, 2020. [Google Scholar]
- Burfening, P.J.; Kress, D.D.; Friedrich, R.L.; Vaniman, D.D. Phenotypic and Genetic Relationships between Calving Ease, Gestation Length, Birth Weight and Preweaning Growth. Anim. Sci. J. 1978, 47, 595–600. [Google Scholar] [CrossRef]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. Anim. Sci. J. 2010, 88 (Suppl. S13), E205–E215. [Google Scholar] [CrossRef] [PubMed]
- Eigenmann, U.J.; Schoon, H.A.; Jahn, D.; Grunert, E. Neonatal respiratory distress syndrome in the calf. Vet. Rec. 1984, 114, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Rebello, C.M.; Ikegami, M.; Polk, D.H.; Jobe, A.H. Postnatal lung responses and surfactant function after fetal or maternal corticosteroid treatment. J. Appl. Physiol. 1996, 80, 1674–1680. [Google Scholar] [CrossRef]
- Benesi, F.J. Neonatal calf asphyxia syndrome. Importance and critical evaluation. Arch. Sch. Vet. Med. Fed. Univ. Bahia 1993, 16, 38–48. [Google Scholar]
- Foxworthy, H.; Enns, R.; Speidel, S.; Thomas, M.; Holt, T. 286 Gestation length as a weak predictor of yearling pulmonary arterial pressure and risk of developing high altitude disease in Angus cattle at high elevation. Anim. Sci. J. 2018, 96 (Suppl. S3), 106–107. [Google Scholar] [CrossRef]
- Shoup, L.M.; Wilson, T.B.; González-Peña, D.; Ireland, F.A.; Rodriguez-Zas, S.; Felix, T.L.; Shike, D.W. Beef cow prepartum supplement level and age at weaning: II. Effects of developmental programming on performance and carcass composition of steer progeny. Anim. Sci. J. 2015, 93, 4936–4947. [Google Scholar] [CrossRef]
- Murray, C.F.; Leslie, K.E. Newborn calf vitality: Risk factors, characteristics, assessment, resulting outcomes and strategies for improvement. Vet. J. 2013, 198, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, J.G. Genetic aspects of high mountain disease in beef cattle. Ph.D. Dissertation, Colorado State University, Fort Collins, CO, USA, 1981. [Google Scholar]
- Pauling, R.C.; Speidel, S.E.; Thomas, M.G.; Holt, T.N.; Enns, R.M. Genetic parameters for pulmonary arterial pressure, yearling performance, and carcass ultrasound traits in Angus cattle. Anim. Sci. J. 2023, 101, skad288. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.; Pierson, R.; Braddy, P.; Saari, D.; Benitez, A.; Horton, D.; Lauerman, L.; McChesney, A.; Alexander, A.; Will, D. Brisket disease in yearling feedlot cattle. JAVMA 1976, 169, 515–517. [Google Scholar] [PubMed]
Mean PAP Score | Low Elevations (<1219 m) | Moderate Elevations (1219–1524 m) | High Elevations (1524–2286 m) | Extreme Elevations (>2286 m) |
---|---|---|---|---|
34–45 mmHg | Low Risk | Low Risk | Low Risk | Low Risk |
46–49 mmHg | Moderate Risk | Moderate Risk | Moderate Risk | Moderate Risk |
>50 mmHg | Moderate Risk | Moderate Risk | High Risk | High Risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stearns, K.; DelCurto-Wyffels, H.; Wyffels, S.; Van Emon, M.; DelCurto, T. The Use of Pulmonary Arterial Pressure (PAP) for Improved Beef Cattle Management. Animals 2024, 14, 2430. https://doi.org/10.3390/ani14162430
Stearns K, DelCurto-Wyffels H, Wyffels S, Van Emon M, DelCurto T. The Use of Pulmonary Arterial Pressure (PAP) for Improved Beef Cattle Management. Animals. 2024; 14(16):2430. https://doi.org/10.3390/ani14162430
Chicago/Turabian StyleStearns, Kaylen, Hannah DelCurto-Wyffels, Sam Wyffels, Megan Van Emon, and Tim DelCurto. 2024. "The Use of Pulmonary Arterial Pressure (PAP) for Improved Beef Cattle Management" Animals 14, no. 16: 2430. https://doi.org/10.3390/ani14162430