Human–Wildlife Conflict Mitigation Based on Damage, Distribution, and Activity: A Case Study of Wild Boar in Zhejiang, Eastern China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Wild Boar Damage Survey
2.3. Camera Trap Survey
2.4. Data Analyses
2.4.1. Wild Boar’s Damage and Its Potential Drivers
2.4.2. Abundance and Density of Wild Boar
2.4.3. Wild Boar’s Activity Rhythms
3. Results
3.1. Damage Status of Wild Boar and Its Drivers in Zhejiang Province
3.2. Abundance and Density of Wild Boar in Zhejiang Province
3.3. Activity Rhythms of Wild Boar in Zhejiang Province
4. Discussion
4.1. Wild Boar’s Damage and Its Potential Drivers
4.2. Wild Boar’s Abundance and Density
4.3. Wild Boar’s Activity Rhythm
4.4. Management Implications
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUCN-SSC. IUCN SSC Guidelines on Human-Wildlife Conflict and Coexistence, 1st ed.; IUCN: Gland, Switzerland, 2023. [Google Scholar]
- Gortazár, C.; Fernandez-de-Simon, J. One tool in the box: The role of hunters in mitigating the damages. Eur. J. Wildl. Res. 2022, 68, 28. [Google Scholar] [CrossRef]
- Nyhus, P.J. Human–Wildlife Conflict and Coexistence. Annu. Rev. Environ. Resour. 2016, 41, 143–171. [Google Scholar] [CrossRef]
- Ridwan, Q.; Wani, Z.A.; Anjum, N.; Bhat, J.A.; Hanief, M.; Pant, S. Human-wildlife conflict: A bibliometric analysis during 1991–2023. Reg. Sustain. 2023, 4, 309–321. [Google Scholar] [CrossRef]
- Baral, K.; Bhandari, S.; Adhikari, B.; Kunwar, R.M.; Sharma, H.P.; Aryal, A.; Ji, W. Anthropogenic mortality of large mammals and trends of conflict over two decades in Nepal. Ecol. Evol. 2022, 12, e9381. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.C.; Hacker, C.E.; Zhang, Y.G.; Li, Y.; Li, J.; Xue, Y.D.; Li, D.Q. Conflicts of human with the Tibetan brown bear (Ursus arctos pruinosus) in the Sanjiangyuan Region, China. Glob. Ecol. Conserv. 2020, 22, e01039. [Google Scholar] [CrossRef]
- Teichman, K.J.; Cristescu, B.; Nielsen, S.E. Does sex matter? Temporal and spatial patterns of cougar-human conflict in British Columbia. PLoS ONE 2013, 8, e74663. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.B.; Lupi, F.; Zhang, J.D.; Liu, J.G. Hidden Cost of Conservation: A demonstration using losses from human-wildlife conflicts under a payments for ecosystem services program. Ecol. Econ. 2020, 169, 106462. [Google Scholar] [CrossRef]
- Chase, J.M.; Blowes, S.A.; Knight, T.M.; Gerstner, K.; May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 2020, 584, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Nyhus, P.; Tilson, R. Agroforestry, elephants, and tigers: Balancing conservation theory and practice in human-dominated landscapes of Southeast Asia. Agric. Ecosyst. Environ. 2004, 104, 87–97. [Google Scholar] [CrossRef]
- Su, K.W.; Ren, J.; Yang, J.; Hou, Y.L.; Wen, Y.L. Human-elephant conflicts and villagers’ attitudes and knowledge in the Xishuangbanna Nature Reserve, China. Int. J. Environ. Res. Public Health 2020, 17, 8910. [Google Scholar] [CrossRef]
- Li, J.; Xue, Y.D.; Hacker, C.E.; Zhang, Y.; Li, Y.; Cong, W.; Jin, L.X.; Li, G.; Wu, B.; Li, D.Q.; et al. Projected impacts of climate change on snow leopard habitat in Qinghai Province, China. Ecol. Evol. 2021, 11, 17202–17218. [Google Scholar] [CrossRef]
- Martay, B.; Brewer, M.J.; Elston, D.A.; Bell, J.R.; Harrington, R.; Brereton, T.M.; Barlow, K.E.; Botham, M.S.; Pearce-Higgins, J.W. Impacts of climate change on national biodiversity population trends. Ecography 2017, 40, 1139–1151. [Google Scholar] [CrossRef]
- Fulgione, D.; Buglione, M. The boar war: Five hot factors unleashing boar expansion and related emergency. Land 2022, 11, 887. [Google Scholar] [CrossRef]
- Anand, S.; Radhakrishna, S. Investigating trends in human-wildlife conflict: Is conflict escalation real or imagined? J. Asia Pac. Biodivers. 2017, 10, 154–161. [Google Scholar] [CrossRef]
- Carter, N.H.; Linnell, J.D.C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 2016, 31, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Caruso, N.; Valenzuela, A.E.J.; Burdett, C.L.; Luengos Vidal, E.M.; Birochio, D.; Casanave, E.B. Summer habitat use and activity patterns of wild boar Sus scrofa in rangelands of central Argentina. PLoS ONE 2018, 13, e0206513. [Google Scholar] [CrossRef] [PubMed]
- Matseketsa, G.; Muboko, N.; Gandiwa, E.; Kombora, D.M.; Chibememe, G. An assessment of human-wildlife conflicts in local communities bordering the western Part of Save Valley Conservancy, Zimbabwe. Glob. Ecol. Conserv. 2019, 20, e00737. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, K.; Lu, Y.F.; Li, M.; Yan, Y.Y. Conflict between wild boars (Sus scrofa) and farmers: Distribution, impacts, and suggestions for management of wild boars in the Three Gorges Reservoir Area. J. Mt. Sci. 2019, 16, 2404–2416. [Google Scholar] [CrossRef]
- Cui, S.; Liu, B.W. The research on the time continuity and space popularization of the control measures of wild boar. Acta Theriol. Sin. 2020, 4, 364–373. [Google Scholar] [CrossRef]
- Campbell-Smith, G.; Sembiring, R.; Linkie, M. Evaluating the effectiveness of human–orangutan conflict mitigation strategies in Sumatra. J. Appl. Ecol. 2012, 49, 367–375. [Google Scholar] [CrossRef]
- Zheng, B.M.; Lin, X.J.; Qi, X.H. Identifying the risk regions of wild boar (Sus scrofa) incidents in China. Animals 2023, 13, 3186. [Google Scholar] [CrossRef]
- Khattak, R.H.; Teng, L.; Mehmood, T.; Ahmad, S.; Liu, Z. Impacts of the wild boar (Sus scrofa) on the livelihood of rural communities in Pakistan and understanding public attitudes towards wild boars. Animals 2022, 12, 3381. [Google Scholar] [CrossRef]
- Xu, F.; Cai, T.J.; Ju, C.Y.; Chen, F.Y. Factors Influencing of residents’ tolerance towards wild boar in and near nature reserve: Taking the Heilongjiang Fenghuangshan Nature Reserve as the example. Acta Ecol. Sin. 2013, 33, 5935–5942. [Google Scholar] [CrossRef]
- Zhao, Q.; Diao, Y.; Weng, Y.; Huang, Z.; Gu, B.; Wu, Y.; Wang, Y.; Zhao, Q.; Wang, F. Predicting future distributions and dispersal pathways for precautionary management of human-raccoon dog conflicts in metropolitan landscapes. Environ. Res. Lett. 2022, 17, 104036. [Google Scholar] [CrossRef]
- Guo, W.; Cao, G.H.; Quan, R.C. Population dynamics and space use of wild boar in a tropical forest, Southwest China. Glob. Ecol. Conserv. 2017, 11, 115–124. [Google Scholar] [CrossRef]
- Liu, J.G.; Li, S.X.; Ou Yang, Z.Y.; Tam, C.; Chen, X. Ecological and socioeconomic effects of china’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef]
- Giefer, M.; An, L. Synthesizing remote sensing and biophysical measures to evaluate human–wildlife conflicts: The case of wild boar crop raiding in rural China. Remote Sens. 2020, 12, 618. [Google Scholar] [CrossRef]
- Liu, W.; Song, X.H.; Wang, R.G.; Shuai, L.Y.; Xiao, S.P.; Bu, Y.Z. The impact of wild boars on the temporal resource utilization of silver pheasants in South China. Wildl. Res. 2023, 51, WR23043. [Google Scholar] [CrossRef]
- Robeson, M.S.; Khanipov, K.; Golovko, G.; Wisely, S.M.; White, M.D.; Bodenchuck, M.; Smyser, T.J.; Fofanov, Y.; Fierer, N.; Piaggio, A.J. Assessing the utility of metabarcoding for diet analyses of the omnivorous wild pig (Sus scrofa). Ecol. Evol. 2018, 8, 185–196. [Google Scholar] [CrossRef]
- Lombardini, M.; Meriggi, A.; Fozzi, A. Factors influencing wild boar damage to agricultural crops in Sardinia (Italy). Curr. Zool. 2017, 63, 507–514. [Google Scholar] [CrossRef]
- Oliveira, Ê.S.D.; Rodrigues, M.L.D.F.; Severo, M.M.; Santos, T.G.D.; Kasper, C.B. Who’s afraid of the big bad boar? Assessing the effect of wild boar presence on the occurrence and activity patterns of other mammals. PLoS ONE 2020, 15, e0235312. [Google Scholar] [CrossRef] [PubMed]
- National Forestry and Grassland Administration. The Adjusted List of Terrestrial Wildlife with Important Ecological, Scientific and Social Value. Available online: https://www.forestry.gov.cn/c/www/gkgjlyjgb/509743.jhtml (accessed on 30 June 2023).
- Wang, J.; Jiang, H.; Liu, N.; Hu, M.; Wang, C.; Zhong, Y.; Cai, H.; Wu, W. Development strategy for urban agglomerations in Yangtze River Economic Belt considering environmental carrying capacity. Chin. J. Eng. Sci. 2022, 24, 148. [Google Scholar] [CrossRef]
- Wang, N.; Xu, C.Y.; Kong, F.B. Value realization and optimization path of forest ecological products—Case study from Zhejiang Province, China. Int. J. Environ. Res. Public Health 2022, 19, 7538. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.P. Inquiry into compensation to damage by wild animals in Zhejiang Province. J. Zhejiang Sci. Technol. 2022, 42, 102–106. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yang, A.X.; Yang, Q.Y.; Kong, X.B.; Fan, H. Spatiotemporal characteristics of human-boar conflicts in China and its implications for ecosystem “anti-service”. Acta Geogr. Sin. 2023, 78, 163–176. [Google Scholar] [CrossRef]
- Muga, G.; Hu, S.; Wang, Z.; Tong, L.; Hu, Z.; Huang, H.; Qu, S. The efficiency of urban–rural integration in the Yangtze River Economic Belt and its optimization. Sustainability 2023, 15, 2419. [Google Scholar] [CrossRef]
- Wu, C.P.; Fan, J.Z.; Xu, Y.H.; Jiang, B.; Jiao, J.J.; Yao, L.J. Adaptability analysis of the evergreen pioneer tree species Schima superba to climate change in Zhejiang Province. Forests 2023, 14, 2438. [Google Scholar] [CrossRef]
- Ding, B.Y.; Jin, X.F.; Zhang, Y.H.; Li, G.Y.; Chen, Z.H.; Zhang, F.G. Distribution pattern and floristic regionalization of wild seed plants in Zhejiang Province, China. Biodivers. Sci. 2023, 31, 48–61. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y. The extraction of forest information and the spatial distribution of its change in Zhejiang Province. Acta Ecol. Sin. 2014, 34, 7261–7270. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.M.; Yu, M.J.; Xu, J. Quantitative evaluation and spatial differentiation of eco-environmental livability in Zhejiang Province, China. J. Mt. Sci. 2020, 17, 1491–1508. [Google Scholar] [CrossRef]
- Minin, E.D.; Slotow, R.; Fink, C.; Bauer, H.; Packer, C. A pan-African spatial assessment of human conflicts with lions and elephants. Nat. Commun. 2021, 12, 2978. [Google Scholar] [CrossRef] [PubMed]
- Honda, T. Environmental factors affecting the distribution of the wild boar, sika deer, Asiatic black bear and Japanese macaque in Central Japan, with implications for human-wildlife conflict. Mamm. Study 2009, 34, 107–116. [Google Scholar] [CrossRef]
- Gracanin, A.; Minchinton, T.E.; Mikac, K.M. Estimating the density of small mammals using the selfie trap is an effective camera trapping method. Trends Ecol. Evol. 2022, 67, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Dénes, F.V.; Silveira, L.F.; Beissinger, S.R. Estimating abundance of unmarked animal populations: Accounting for imperfect detection and other sources of zero inflation. Methods Ecol. Evol. 2015, 6, 543–556. [Google Scholar] [CrossRef]
- Lazzeri, L.; Fazzi, P.; Lucchesi, M.; Mori, E.; Velli, E.; Cappai, N.; Ciuti, F.; Ferretti, F.; Fonda, F.; Paniccia, C.; et al. The rhythm of the night: Patterns of activity of the European wildcat in the Italian Peninsula. Mamm. Biol. 2022, 102, 1769–1782. [Google Scholar] [CrossRef]
- Rivieccio, E.; Troiano, C.; Petrelli, S.; Maselli, V.; De Filippo, G.; Fulgione, D.; Buglione, M. Population development and landscape preference of reintroduced wild ungulates: Successful rewilding in Southern Italy. PeerJ 2022, 10, e14492. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Z.; Du, M.T.; Zhu, Y.X.; Wang, D.W.; Li, Z.L.; Wang, T.M. A practical guide for estimating the density of unmarked populations using camera traps. Biodivers. Sci. 2023, 31, 173–189. [Google Scholar] [CrossRef]
- Department of Natural Resources of Zhejiang Province; Zhejiang Provincial Bureau of Statistics. Main Data Bulletin of the Third National Land Survey of Zhejiang Province 2021. Available online: https://zrzyt.zj.gov.cn/art/2021/12/3/art_1289924_58988385.html (accessed on 3 December 2021).
- Zhejiang Provincial Bureau of Statistics; Survey Office of the National Bureau of Statistics in Zhejiang. Zhejiang Statistical Yearbook 2022; China Statistics Press: Beijing, China, 2022. Available online: https://tjj.zj.gov.cn/art/2022/10/11/art_1525563_58954684.html (accessed on 11 October 2022).
- Iijima, H. A review of wildlife abundance estimation models: Comparison of models for correct application. Mamm. Study 2020, 45, 177–188. [Google Scholar] [CrossRef]
- Michalski, F.; Peres, C.A. Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conserv. Biol. 2007, 21, 1626–1640. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Field, J.; Turvey, S.T.; Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 2008, 45, 1228–1236. [Google Scholar] [CrossRef]
- Wang, J.X. Study on Seasonal Home Range and Habitat Selection of Wild Boar in Southern Lesser Khingan Mountains Based on GPS Tracking Technology. Master’s Thesis, Northeast Forestry University, Harbin, China, 2020. [Google Scholar]
- Peng, C.C. Preliminary Analysis on Basic Characteristics, Activity Rhythm and Genetic Diversity of Wild Boar Population in Mountainous Environment of Guizhou. Master’s Thesis, Guizhou University, Guiyang, China, 2022. [Google Scholar]
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2008, 14, 322–337. [Google Scholar] [CrossRef]
- Zanni, M.; Brivio, F.; Grignolio, S.; Apollonio, M. Estimation of spatial and temporal overlap in three ungulate species in a mediterranean environment. Mamm. Res. 2021, 66, 149–162. [Google Scholar] [CrossRef]
- Jin, Y.C.; Kong, W.Y.; Yan, H.; Bao, G.D.; Liu, T.; Ma, Q.F.; Li, X.; Zou, H.F.; Zhang, M.H. Multi-scale spatial prediction of wild boar damage risk in Hunchun: A key tiger range in China. Animals 2021, 11, 1012. [Google Scholar] [CrossRef] [PubMed]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.H.; Wang, Z.C.; An, K.; Tan, Y.C.; Ji, W.H.; Su, J.H. Possibility of wild boar harm occurring in five provinces of Northwest China. Animals 2023, 13, 3788. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.; Ko, D.W.; Cho, W. Predicting disparity between asf-managed areas and wild boar habitats: A case of South Korea. Animals 2023, 13, 3482. [Google Scholar] [CrossRef]
- Xie, P.G.; Hu, J.; Li, T.T.; Guo, R.; Xu, L.; Song, X.; Li, J.Q.; Xu, A.C. Distribution and activity patterns of wild boar (Sus scrofa) in the Qingliangfeng National Nature Reserve, Zhejiang Province. Acta Theriol. Sin. 2022, 42, 168–176. [Google Scholar] [CrossRef]
- Chen, X.N.; Tian, J.; Liu, M.Z.; Shen, Y.Y.; Yu, J.; Liu, F.; Shen, X.L.; Li, S. Estimating the population size of wild boar (Sus scrofa) in Kaihua County, Zhejiang Province using camera-trapping data. Acta Theriol. Sin. 2023, 43, 523–532. [Google Scholar] [CrossRef]
- Bao, Y.X. Survey and Assessment Report on Wild Boar Population in Zhejiang Province; Zhejiang Forestry Bureau: Hangzhou, China, 2016.
- Zhu, Q.F.; Jin, X.L. The study on the abundance and distribution of wild boar in Shaanxi Province. In The Compilation of Abstracts from the 8th Western China Zoological Symposium, Proceedings of the 8th Western China Zoological Symposium, Guizhou Normal University, Guiyang, China, 18–21 July 2019; Guizhou Normal University: Guiyang, China, 2019; p. 24. [Google Scholar]
- Shi, J.B.; Dunbar, R.I.M.; Buckland, D.; Miller, D. Daytime activity budgets of feral goats (Capra hircus) on the Isle of Rum: Influence of season, age, and sex. Can. J. Zool. 2003, 81, 803–815. [Google Scholar] [CrossRef]
- Brivio, F.; Grignolio, S.; Brogi, R.; Benazzi, M.; Bertolucci, C.; Apollonio, M. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: The wild boar. Mamm. Biol. 2017, 84, 73–81. [Google Scholar] [CrossRef]
- Johann, F.; Handschuh, M.; Linderoth, P.; Heurich, M.; Dormann, C.F.; Arnold, J. Variability of daily space use in wild boar Sus scrofa. Wildl. Biol. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Keuling, O.; Stier, N.; Roth, M. How Does Hunting influence activity and spatial usage in wild boar (Sus scrofa) L.? Eur. J. Wildl. Res. 2008, 54, 729–737. [Google Scholar] [CrossRef]
- Doormaal, N.V.; Ohashi, H.; Koike, S.; Kaji, K. Influence of human activities on the activity patterns of Japanese sika deer (Cervus nippon) and wild boar (Sus scrofa) in Central Japan. Eur. J. Wildl. Res. 2015, 61, 517–527. [Google Scholar] [CrossRef]
- Jiang, H.L.; Zhou, S.C.; Zhang, M.H.; Xu, W.P.; Li, W.; Liu, J.Y. Activity rhythm of wild boar and roe deer and its relationship with moonlight cycle in sympatric distribution. Acta Ecol. Sin. 2023, 43, 3128–3136. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Li, C.Q.; Li, T.F.; Yang, L.Y.; Yang, R. Analysis on the activity rhythm and damage of wild boar (Sus scrofa) in Xishui National Nature Reserve. Acta Ecol. Sin. 2022, 43, 323–330. [Google Scholar] [CrossRef]
- Reinke, H.; König, H.J.; Keuling, O.; Kuemmerle, T.; Kiffner, C. Zoning has little impact on the seasonal diel activity and distribution patterns of wild boar (Sus scrofa) in an UNESCO Biosphere Reserve. Ecol. Evol. 2021, 11, 17091–17105. [Google Scholar] [CrossRef] [PubMed]
- Keuling, O.; Stier, N.; Roth, M. Annual and seasonal space use of different age classes of female wild boar (Sus scrofa) L. Eur. J. Wildl. Res. 2008, 54, 403–412. [Google Scholar] [CrossRef]
- Mckillop, I.G.; Sibly, R.M. Animal Behaviour at Electric Fences and the Implications for Management. Mamm. Rev. 1988, 18, 91–103. [Google Scholar] [CrossRef]
- Sapkota, S.; Aryal, A.; Baral, S.R.; Hayward, M.W.; Raubenheimer, D. Economic analysis of electric fencing for mitigating human-wildlife conflict in Nepal. J. Resour. Ecol. 2014, 5, 237–243. [Google Scholar] [CrossRef]
- Croft, S.; Franzetti, B.; Gill, R.; Massei, G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS ONE 2020, 15, e0238429. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Shu, X.X.; Pei, E.; Yuan, X.; Wang, T.H.; Wang, Z.H. Influence of breeding habitat characteristics and landscape heterogeneity on anuran species richness and abundance in urban parks of Shanghai, China. Urban For. Urban Green 2018, 32, 56–63. [Google Scholar] [CrossRef]
- Haley, A.L.; Lemieux, T.A.; Piczak, M.L.; Karau, S.; D’Addario, A.; Irvine, R.L.; Beaudoin, C.; Bennett, J.R.; Cooke, S.J. On the effectiveness of public awareness campaigns for the management of Invasive species. Environ. Conserv. 2023, 50, 202–211. [Google Scholar] [CrossRef]
Category | Content | Description |
---|---|---|
Physical injuries to local residents | Number of injuries to residents | Number of injuries and casualties caused by wild boar to humans (times) |
Damage to crops | Amount of damage to crops | Amount of damage to local crops caused by wild boar (times) |
Area of damage to crops | Area of wild boar damage to local crops (m2) | |
Amount of economic losses caused by wild boar to residents | Amount of money lost by residents after wild boar caused damage to local crops (CNY), which is related to the type and degree of damaged crops |
Investigation Content | Assignment |
---|---|
Number of injuries to residents | The number of injuries to residents per county: 0 time = 0, 1~2 times = 1, 3~4 times = 2, 5~6 times = 3, 7~8 times = 4, 9~10 times = 5, 11~12 times = 6, more than 13 times = 7 |
Amount of damage to crops | The amount of damage: 0 time = 0, 1~100 times = 1, 101~200 times = 2, 201~300 times = 3, 301~400 times = 4, 401~500 times = 5, 501~600 times = 6, more than 601 times = 7 |
Area of damage to crops | The area of damage: 0 Mu = 0, 1~200 Mu = 1, 201~400 Mu = 2, 401~600 Mu = 3, 601~800 Mu = 4, 801~1000 Mu = 5, 1001~1200 Mu = 6, more than 1201 Mu = 7 |
Amount of economic losses caused by wild boar to residents | The amount of economic losses: 0 million yuan = 0, 1~50 million yuan = 1, 51~100 million yuan = 2, 101~150 million yuan = 3, 151~200 million yuan = 4, 201~250 million yuan = 5, 251~300 million yuan = 6, more than 301 million yuan = 7 |
City | District/County | Population Density of Wild Boar (Individuals/km2) |
---|---|---|
Hangzhou | Linan | 3.01 ± 0.57 |
Jiande | 1.25 ± 0.15 | |
Tonglu | 0.32 ± 0.10 | |
Wenzhou | Taishun | 0.50 ± 0.11 |
Huzhou | Anji | 1.89 ± 0.41 |
Shaoxing | Shengzhou | 0.68 ± 0.13 |
Jinhua | Wucheng | 2.78 ± 0.34 |
Taizhou | Xianju | 2.91 ± 0.58 |
Lishui | Qingtian | 1.82 ± 0.54 |
Suichang | 1.47 ± 0.17 | |
Quzhou | Kaihua | 2.02 ± 0.73 |
Average density | 1.77 ± 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhao, S.; Tan, L.; Wang, J.; Song, X.; Zhang, S.; Chen, F.; Xu, A. Human–Wildlife Conflict Mitigation Based on Damage, Distribution, and Activity: A Case Study of Wild Boar in Zhejiang, Eastern China. Animals 2024, 14, 1639. https://doi.org/10.3390/ani14111639
Liu J, Zhao S, Tan L, Wang J, Song X, Zhang S, Chen F, Xu A. Human–Wildlife Conflict Mitigation Based on Damage, Distribution, and Activity: A Case Study of Wild Boar in Zhejiang, Eastern China. Animals. 2024; 14(11):1639. https://doi.org/10.3390/ani14111639
Chicago/Turabian StyleLiu, Junchen, Shanshan Zhao, Liping Tan, Jianwu Wang, Xiao Song, Shusheng Zhang, Feng Chen, and Aichun Xu. 2024. "Human–Wildlife Conflict Mitigation Based on Damage, Distribution, and Activity: A Case Study of Wild Boar in Zhejiang, Eastern China" Animals 14, no. 11: 1639. https://doi.org/10.3390/ani14111639