Early Feeding Strategy Mitigates Major Physiological Dynamics Altered by Heat Stress in Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird Management and Experimental Design
2.2. The Experimental Environment Conditions
2.3. Production Performance
2.4. Blood Samples Collection
2.5. Serum Metabolic Hormones and Biochemical Analysis
2.6. Serum Antioxidant Markers
2.7. Immunological Parameteres
2.8. Liver Heat Shock Protein 70
2.9. Statistical Analysis
3. Results
3.1. Production Performance
3.2. Blood Metabolic Hormones and Biochemical Markers
3.3. HSP70 and Oxidation Markers
3.4. Innate and Humoral Immuneity Marker Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Khalaifah, H.; Al-Nasser, A. Using native plants in poultry feed: Food security and sustainability approach. In Proceedings of the 23rd International Multidisciplinary Scientific GeoConference SGEM 2023, Albena, Bulgaria, 29 June–8 July 2023; pp. 249–254. [Google Scholar]
- Kamel, N.N.; Ahmed, A.M.H.; Mehaisen, G.M.K.; Mashaly, M.M.; Abass, A.O. Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens. Int. J. Biometeorol. 2017, 61, 1637–1645. [Google Scholar] [CrossRef] [PubMed]
- Onagbesan, O.M.; Uyanga, V.A.; Oso, O.; Tona, K.; Oke, O.E. Alleviating heat stress effects in poultry: Updates on methods and mechanisms of actions. Front. Vet. Sci. 2023, 10, 1255520. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, M.H. Effects of heat stress on the gut health of poultry. J. Anim. Sci. 2020, 98, skaa090. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Tang, S.L.; Liu, L.; Cao, A.Z.; Xie, J.J.; Zhang, H.F. Effects of bile acids on growth performance and lipid metabolism during chronic heat stress in broiler chickens. Animals 2021, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Alzarah, M.I.; Althobiati, F.; Abbas, A.O.; Mehaisen, G.M.K.; Kamel, N.N. Citrullus colocynthis seeds: A potential natural immune modulator source for broiler reared under chronic heat stress. Animals 2021, 11, 1951. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.A.; Najaa, M.; Zulaikha, Z.A.; Zulkifli, I.; Soleimani, A.F. Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains. Asian-Australas. J. Anim. Sci. 2020, 33, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Ncho, C.M.; Gupta, V.; Choi, Y.H. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. Anim. Nutr. 2023, 13, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Oke, O.E.; Alo, E.T.; Oke, F.O.; Oyebamiji, Y.A.; Ijaiya, M.A.; Odefemi, M.A.; Kazeem, R.Y.; Soyode, A.A.; Aruwajoye, O.M.; Ojo, R.T.; et al. Early age thermal manipulation on the performance and physiological response of broiler chickens under hot humid tropical climate. J. Therm. Biol. 2020, 88, 102517. [Google Scholar] [CrossRef] [PubMed]
- Zineb, B.; Said, D.; Djilali, B. Impact of both early-age acclimation and linseed dietary inclusion on fat deposition and fatty acids’ meat traits in heat-stressed broiler chickens. J. Adv. Vet. Anim. Res. 2021, 8, 237–245. [Google Scholar] [CrossRef]
- Ahmad, R.; Yu, Y.H.; Hsiao, F.S.; Su, C.H.; Liu, H.C.; Tobin, I.; Zhang, G.; Cheng, Y.H. Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals 2022, 12, 2297. [Google Scholar] [CrossRef]
- Ogbuagu, N.E.; Ayo, J.O.; Aluwong, T.; Akor-Dewu, M.B. Effect of L-serine on circadian variation of cloacal and body surface temperatures in broiler chickens subjected to feed restriction during the hot-dry season. J. Therm. Biol. 2023, 112, 103445. [Google Scholar] [CrossRef] [PubMed]
- Bilal, R.M.; Hassan, F.U.; Farag, M.R.; Nasir, T.A.; Ragni, M.; Mahgoub, H.A.M.; Alagawany, M. Thermal stress and high stocking densities in poultry farms: Potential effects and mitigation strategies. J. Therm. Biol. 2021, 99, 102944. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kong, B.Y.W.; Bowker, B.C.; Zhuang, H.; Kim, W.K. Nutritional strategies to improve meat quality and composition in the challenging conditions of broiler production: A review. Animals 2023, 13, 1386. [Google Scholar] [CrossRef]
- Rahman; Hidayat, C. Reducing negative effect of heat stress in broiler through nutritional and feeding strategy. IOP Conf. Ser. Earth Environ. Sci. 2020, 465, 012034. [Google Scholar] [CrossRef]
- Saracila, M.; Panaite, T.D.; Papuc, C.P.; Criste, R.D. Heat stress in broiler chickens and the effect of dietary polyphenols, with special reference to Willow (Salix spp.) bark supplements—A review. Antioxidants 2021, 10, 686. [Google Scholar] [CrossRef] [PubMed]
- Teyssier, J.R.; Brugaletta, G.; Sirri, F.; Dridi, S.; Rochell, S.J. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Front. Physiol. 2022, 13, 943612. [Google Scholar] [CrossRef] [PubMed]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef] [PubMed]
- Al-Surrayai, T.; Al-Khalaifah, H. Dietary supplementation of fructooligosaccharides enhanced antioxidant activity and cellular immune response in broiler chickens. Front. Vet. Sci. 2022, 9, 857294. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Khalaifah, H.; Abd El-Hamid, H.S.; Al-Harthi, M.A.; Alyileili, S.R.; El-Shafey, A.A. Antioxidant status, blood constituents and immune response of broiler chickens fed two types of diets with or without different concentrations of active yeast. Animals 2022, 12, 453. [Google Scholar] [CrossRef]
- El-Moniary, M.M.; Hemid, A.A.; El-Wardany, I.; Gehad, A.; Gouda, A. The effect of early age heat conditioning and some feeding programs for heat-stressed broiler chicks on: 1—Productive performance. World J. Agric. Sci. 2010, 6, 689–695. [Google Scholar]
- Farghly, M.F.A.; Mahrose, K.M.; Galal, A.E.; Ali, R.M.; Ahmad, E.A.M.; Rehman, Z.U.; Ullah, Z.; Ding, C. Implementation of different feed withdrawal times and water temperatures in managing turkeys during heat stress. Poult. Sci. 2018, 97, 3076–3084. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Jiao, H.; Buyse, J.; Decuypere, E. Strategies for preventing heat stress in poultry. Worlds Poult. Sci. J. 2006, 62, 71–85. [Google Scholar] [CrossRef]
- Zhan, X.A.; Wang, M.; Ren, H.; Zhao, R.Q.; Li, J.X.; Tan, Z.L. Effect of early feed restriction on metabolic programming and compensatory growth in broiler chickens. Poult. Sci. 2007, 86, 654–660. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Poultry: 9th Revised Edition; The National Academies Press: Washington, DC, USA, 1994; p. 176.
- Marai, I.F.M.; Ayyat, M.S.; Abd El-Monem, U.M. Growth performance and reproductive traits at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Trop. Anim. Health Prod. 2001, 33, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Dedousi, A.; Kritsa, M.Z.; Sossidou, E.N. Thermal comfort, growth performance and welfare of olive pulp fed broilers during hot season. Sustainability 2023, 15, 10932. [Google Scholar] [CrossRef]
- Jain, N.C. Schalm’s Veterinary Hematology, 4th ed.; Lea and Febiger Philadelphia: Philadelphia, PA, USA, 1986. [Google Scholar]
- Sánchez-Carbayo, M.; Mauri, M.; Alfayate, R.; Miralles, C.; Soria, F. Analytical and clinical evaluation of TSH and thyroid hormones by electrochemiluminescent immunoassays. Clin. Biochem. 1999, 32, 395–403. [Google Scholar] [CrossRef]
- Weichselbaum, T.E. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Pathol. 1946, 10, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Doumas, B.T.; Biggs, H.G.; Arends, R.L.; Pinto, P.V.C. Determination of serum albumin. In Standard Methods of Clinical Chemistry; Cooper, G.R., Ed.; Elsevier: Amsterdam, The Netherlands, 1972; Volume 7, pp. 175–188. [Google Scholar]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Sanders, G.T.; Pasman, A.J.; Hoek, F.J. Determination of uric acid with uricase and peroxidase. Clin. Chim. Acta 1980, 101, 299–303. [Google Scholar] [CrossRef]
- Janaszewska, A.; Bartosz, G. Assay of total antioxidant capacity: Comparison of four methods as applied to human blood plasma. Scand. J. Clin. Lab. Investig. 2002, 62, 231–236. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Oberley, L.W.; Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar] [CrossRef]
- Placer, Z.A.; Cushman, L.L.; Johnson, B.C. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 1966, 16, 359–364. [Google Scholar] [CrossRef]
- Tiemann, U.; Brüssow, K.P.; Jonas, L.; Pöhland, R.; Schneider, F.; Dänicke, S. Effects of diets with cereal grains contaminated by graded levels of two Fusarium toxins on selected immunological and histological measurements in the spleen of gilts. J. Anim. Sci. 2006, 84, 236–245. [Google Scholar] [CrossRef]
- Lie, Ø.; Syed, M.; Solbu, H. Improved agar plate assays of bovine lysozyme and haemolytic complement activity. Acta Vet. Scand. 1986, 27, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.; Tolba, S.; Mahrose, K.; Felemban, S.G.; Khafaga, A.F.; Khalifa, N.E.; Jaremko, M.; Moustafa, M.; Alshaharni, M.O.; Algopish, U.; et al. Heat shock proteins as a key defense mechanism in poultry production under heat stress conditions. Poult. Sci. 2024, 103, 103537. [Google Scholar] [CrossRef]
- Anderson, R.L.; Wang, C.Y.; van Kersen, I.; Lee, K.J.; Welch, W.J.; Lavagnini, P.; Hahn, G.M. An immunoassay for heat shock protein 73/72: Use of the assay to correlate HSW3/72 levels in mammalian cells with heat response. Int. J. Hyperth. 1993, 9, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Biswal, J.; Vijayalakshmy, K.; Bhattacharya, T.K.; Rahman, H. Impact of heat stress on poultry production. Worlds Poult. Sci. J. 2022, 78, 179–196. [Google Scholar] [CrossRef]
- Shakeri, M.; Oskoueian, E.; Le, H.H.; Shakeri, M. Strategies to combat heat stress in broiler chickens: Unveiling the roles of selenium, vitamin E and vitamin C. Vet. Sci. 2020, 7, 71. [Google Scholar] [CrossRef]
- Fathi, M.M.; Galal, A.; Radwan, L.M.; Abou-Emera, O.K.; Al-Homidan, I.H. Using major genes to mitigate the deleterious effects of heat stress in poultry: An updated review. Poult. Sci. 2022, 101, 102157. [Google Scholar] [CrossRef] [PubMed]
- Brugaletta, G.; Teyssier, J.R.; Rochell, S.J.; Dridi, S.; Sirri, F. A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front. Physiol. 2022, 13, 934381. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.S.A.; Lozovskiy, A.R.; Ali, A.M.A. Strategies to combat the deleterious impacts of heat stress through feed restrictions and dietary supplementation (vitamins, minerals) in broilers. J. Indones. Trop. Anim. Agric. 2019, 44, 155–166. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Serum metabolomics study of nutrient metabolic variations in chronic heat-stressed broilers. Br. J. Nutr. 2018, 119, 771–781. [Google Scholar] [CrossRef]
- Al-Otaibi, M.I.M.; Abdellatif, H.A.E.; Al-Huwail, A.K.A.; Abbas, A.O.; Mehaisen, G.M.K.; Moustafa, E.S. Hypocholesterolemic, antioxidative, and anti-Inflammatory effects of dietary Spirulina platensisis supplementation on laying hens exposed to cyclic heat stress. Animals 2022, 12, 2759. [Google Scholar] [CrossRef]
- Minias, P. The use of haemoglobin concentrations to assess physiological condition in birds: A review. Conserv. Physiol. 2015, 3, cov007. [Google Scholar] [CrossRef]
- Taouis, M.; Dridi, S.; Cassy, S.; Benomar, Y.; Raver, N.; Rideau, N.; Picard, M.; Williams, J.; Gertler, A. Chicken leptin: Properties and actions. Domest. Anim. Endocrinol. 2001, 21, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, S.; Nidamanuri, A.L. Role of leptin and ghrelin in regulation of physiological functions of chicken. World’s Poult. Sci. J. 2022, 78, 1021–1036. [Google Scholar] [CrossRef]
- Boswell, T. Regulation of energy balance in birds by the neuroendocrine hypothalamus. J. Poult. Sci. 2005, 42, 161–181. [Google Scholar] [CrossRef]
- Kpomasse, C.C.; Oke, O.E.; Houndonougbo, F.M.; Tona, K. Broilers production challenges in the tropics: A review. Vet. Med. Sci. 2021, 7, 831–842. [Google Scholar] [CrossRef]
- Beckford, R.C.; Ellestad, L.E.; Proszkowiec-Weglarz, M.; Farley, L.; Brady, K.; Angel, R.; Liu, H.C.; Porter, T.E. Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poult. Sci. 2020, 99, 6317–6325. [Google Scholar] [CrossRef] [PubMed]
- Alaqil, A.A.; Abd El-Atty, H.K.; Abbas, A.O. Intermittent lighting program relieves the deleterious effect of heat stress on growth, stress biomarkers, physiological status, and immune response of broiler chickens. Animals 2022, 12, 1834. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Zhang, M.H.; Feng, J.H.; Zhou, Y. Myostatin and related factors are involved in skeletal muscle protein breakdown in growing broilers exposed to constant heat stress. Animals 2021, 11, 1467. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.N.; Ramiah, S.K.; Zulkifli, I. Heat shock protein response to stress in poultry: A review. Animals 2023, 13, 317. [Google Scholar] [CrossRef] [PubMed]
- Asadollahpour Nanaei, H.; Kharrati-Koopaee, H.; Esmailizadeh, A. Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens. BMC Genom. 2022, 23, 224. [Google Scholar] [CrossRef] [PubMed]
- Radwan, L.M. Genetic improvement of egg laying traits in Fayoumi chickens bred under conditions of heat stress through selection and gene expression studies. J. Therm. Biol. 2020, 89, 102546. [Google Scholar] [CrossRef] [PubMed]
- Liew, P.K.; Zulkifli, I.; Hair-Bejo, M.; Omar, A.R.; Israf, D.A. Effects of early age feed restriction and heat conditioning on heat shock protein 70 expression, resistance to infectious bursal disease, and growth in male broiler chickens subjected to heat stress. Poult. Sci. 2003, 82, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Naz, S.; Ullah, H.; Ullah, Q.; Laudadio, V.; Qudratullah; Bozzo, G.; Tufarelli, V. Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies. Anim. Biotechnol. 2023, 34, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Oke, O.E.; Uyanga, V.A.; Iyasere, O.S.; Oke, F.O.; Majekodunmi, B.C.; Logunleko, M.O.; Abiona, J.A.; Nwosu, E.U.; Abioja, M.O.; Daramola, J.O.; et al. Environmental stress and livestock productivity in hot-humid tropics: Alleviation and future perspectives. J. Therm. Biol. 2021, 100, 103077. [Google Scholar] [CrossRef]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Manangi, M.; Bekker, M.; Chen, J.X.; Vazquez-Anon, M. Nutritional intervention strategies using dietary antioxidants and organic trace minerals to reduce the incidence of wooden breast and other carcass quality defects in broiler birds. Front. Physiol. 2021, 12, 663409. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Li, Z.; Wang, X.C.; Zhao, F.; Wang, C.; Zhang, Q.Y.; Chen, X.Y.; Geng, Z.Y.; Zhang, C. Resveratrol attenuates heat stress-induced impairment of meat quality in broilers by regulating the Nrf2 signaling pathway. Animals 2022, 12, 1889. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, R.; Nurjanah, S.; Furukawa, K.; Murai, A.; Kikusato, M.; Nochi, T.; Toyomizu, M. Heat stress causes immune abnormalities via massive damage to effect proliferation and differentiation of lymphocytes in broiler chickens. Front. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Zmrhal, V.; Svoradova, A.; Venusova, E.; Slama, P. The influence of heat stress on chicken immune system and mitigation of negative impacts by baicalin and baicalein. Animals 2023, 13, 2564. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.P.; Li, W.H.; Liu, Y.L.; Lun, J.C.; He, Y.M. Heat stress inhibits expression of the cytokines, and NF-κB-NLRP3 signaling pathway in broiler chickens infected with salmonella typhimurium. J. Therm. Biol. 2021, 98, 102945. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, D.; Kum, S.; Eren, U. Effects of vitamin E on T cell subsets and immunoglobulin-containing plasma cells in the spleen of heat-stressed broiler chickens. Med. Weter.-Vet. Med.-Sci. Pract. 2023, 79, 302–308. [Google Scholar] [CrossRef]
- Wigley, P.; Kaiser, P. Avian cytokines in health and disease. Braz. J. Poult. Sci. 2003, 5, 1–14. [Google Scholar] [CrossRef]
- Saleh, K.M.M.; Al-Zghoul, M.B. Effect of acute heat stress on the mRNA levels of cytokines in broiler chickens subjected to embryonic thermal manipulation. Animals 2019, 9, 499. [Google Scholar] [CrossRef]
- Veldhuizen, E.J.A.; Dalgaard, T.S. Chapter 8.5—Soluble components and acute-phase proteins. In Avian Immunology, 3rd ed.; Kaspers, B., Schat, K.A., Göbel, T.W., Vervelde, L., Eds.; Academic Press: Boston, MA, USA, 2022; pp. 217–230. [Google Scholar]
- Juul-Madsen, H.R.; Viertlböeck, B.; Härtle, S.; Smith, A.L.; Göbel, T.W. Chapter 7—Innate Immune Responses. In Avian Immunology, 2nd ed.; Schat, K.A., Kaspers, B., Kaiser, P., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 121–147. [Google Scholar]
- Juul-Madsen, H.R.; Viertlboeck, B.; Smith, A.L.; Göbel, T.W.F. 7-Avian innate immune responses. In Avian Immunology; Davison, F., Kaspers, B., Schat, K.A., Eds.; Academic Press: London, UK, 2008; pp. 129–158. [Google Scholar]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Abdel-Latif, M.A.; El-Hamid, H.S.A.; Emam, M.; Noreldin, A.E.; Helmy, Y.A.; El-Far, A.H.; Elbestawy, A.R. Dietary lysozyme and avilamycin modulate gut health, immunity, and growth rate in broilers. BMC Vet. Res. 2024, 20, 28. [Google Scholar] [CrossRef]
- Bastamy, M.; Raheel, I.; Elbestawy, A.; Diab, M.; Hammad, E.; Elebeedy, L.; El-Barbary, A.M.; Albadrani, G.M.; Abdel-Daim, M.M.; Abdel-Latif, M.A.; et al. Postbiotic, anti-inflammatory, and immunomodulatory effects of aqueous microbial lysozyme in broiler chickens. Anim. Biotechnol. 2024, 35, 2309955. [Google Scholar] [CrossRef]
Ingredients (%) | Starter (0–21 Days) | Grower–Finisher (22–35 Days) |
---|---|---|
Yellow corn | 54.00 | 58.93 |
Soybean meal, 44% | 34.12 | 30.25 |
Corn gluten, 60% | 6.10 | 4.9 |
Soy oil | 1.00 | 1.18 |
Limestone | 1.65 | 1.6 |
Monocalcium phosphate | 1.65 | 1.65 |
Salt | 0.45 | 0.45 |
Premix 1 | 0.30 | 0.30 |
DL-methionine, 98% | 0.15 | 0.16 |
Lysine, HCl, 78% | 0.30 | 0.30 |
NaCO3 | 0.28 | 0.28 |
Chemical composition | ||
Metabolizable energy, kcal/kg | 2900 | 2951 |
Crude protein % | 23.02 | 21.00 |
Ether extract % | 3.48 | 3.78 |
Crude fiber % | 3.64 | 3.47 |
Calcium % | 0.99 | 0.96 |
Available phosphorus% | 0.45 | 0.45 |
Lysine % | 1.34 | 1.24 |
Methionine % | 0.52 | 0.50 |
Threonine % | 0.86 | 0.78 |
Week of Age | Min Temp. (°C) | Max Temp. (°C) | RH (%) | Min THI 1 | Max THI |
---|---|---|---|---|---|
1st | 29.8 | 33.6 | 70.0 | 28.3 | 32.5 |
2nd | 30.2 | 35.1 | 69.0 | 28.7 | 33.9 |
3rd | 30.3 | 34.8 | 75.2 | 29.1 | 33.6 |
4th | 30.4 | 35.4 | 75.6 | 29.2 | 34.3 |
5th | 30.7 | 35.7 | 76.5 | 29.5 | 34.5 |
Mean | 30.3 | 34.9 | 73.3 | 29.0 | 33.8 |
Items | Period | Treatments * | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
Control | FWD-24 | FWD-12 | FWD-8 | ||||
Body weight, g | Day 1 | 43.2 | 43.0 | 43.0 | 43.8 | 0.36 | 0.823 |
Day 21 | 532 c | 566 a | 549 b | 551 b | 2.75 | <0.0001 | |
Day 35 | 1841 d | 2201 a | 2011 c | 2085 b | 28.8 | <0.0001 | |
Body weight gain, g | Day 1 to 21 | 490 c | 524 a | 507 b | 508 b | 2.71 | <0.0001 |
Day 1 to 35 | 1799 d | 2158 a | 1969 c | 2042 b | 28.7 | <0.0001 | |
Feed intake, g | Day 1 to 21 | 699 | 684 | 688 | 681 | 3.33 | 0.230 |
Day 22 to 35 | 2500 b | 2762 a | 2687 a | 2720 a | 124 | <0.0001 | |
Day 1 to 35 | 3199 b | 3446 a | 3375 a | 3402 a | 23.9 | <0.0001 | |
FCR | Day 1 to 21 | 1.43 a | 1.30 c | 1.36 b | 1.34 bc | 0.11 | <0.0001 |
Day 1 to 35 | 1.78 a | 1.60 c | 1.72 b | 1.67 b | 0.02 | <0.0001 |
Items | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | FWD-24 | FWD-12 | FWD-8 | |||
T3, ng/dL | 3.92 c | 4.39 a | 4.13 b | 4.29 a | 0.04 | <0.0001 |
T4, ng/dL | 21.95 c | 24.73 a | 23.63 b | 23.87 b | 0.22 | <0.0001 |
Leptin, ng/mL | 2.18 a | 1.49 b | 1.59 b | 1.65 b | 0.08 | 0.003 |
Total protein, g/dL | 5.05 b | 6.25 a | 5.95 a | 6.13 a | 0.11 | <0.0001 |
Albumin, g/dL | 2.58 | 3.02 | 2.82 | 2.98 | 0.08 | 0.244 |
Globulin, g/dL | 2.47 b | 3.23 a | 3.13 a | 3.15 a | 0.08 | <0.0001 |
T-chol, mg/dL | 212.3 a | 191.7 b | 196.8 b | 194.8 b | 2.00 | <0.0001 |
Uric acid, mg/dL | 4.52 a | 4.02 b | 4.08 b | 4.05 b | 0.07 | 0.014 |
Hb, g/dL | 10.01 b | 11.19 a | 10.99 a | 11.11 a | 0.12 | <0.0001 |
Parameters | Treatments * | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | FWD-24 | FWD-12 | FWD-8 | |||
HSP70, ng/mg | 2.89 b | 5.13 a | 5.03 a | 5.07 a | 0.21 | <0.0001 |
TAC, U/mL | 10.52 b | 13.32 a | 12.97 a | 13.18 a | 0.28 | <0.0001 |
CAT, U/mL | 2.90 b | 5.58 a | 5.46 a | 5.23 a | 0.26 | <0.0001 |
SOD, U/mL | 134.9 b | 151.2 a | 149.6 a | 148.3 a | 1.77 | <0.0001 |
MDA, nmol/mL | 5.28 a | 2.63 b | 2.98 b | 2.93 b | 0.25 | <0.0001 |
Parameters | Treatments * | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | FWD-24 | FWD-12 | FWD-8 | |||
IgA, mg/100 mL | 3.33 c | 4.64 b | 5.21 ab | 5.29 a | 0.19 | <0.0001 |
IgG, mg/100 mL | 1.96 b | 3.95 a | 3.47 a | 3.60 a | 0.19 | <0.0001 |
IgM, mg/100 mL | 0.96 b | 1.79 a | 1.31 ab | 1.69 a | 0.10 | 0.010 |
IL-1β, µg/mL | 149.50 b | 162.33 a | 163.67 a | 163.33 a | 2.02 | 0.023 |
IFN-γ, pg/mL | 7.28 c | 10.87 b | 11.32 ab | 11.77 a | 0.39 | <0.001 |
Lysozyme, µg/mL | 134.83 b | 169.67 a | 170.17 a | 171.33 a | 3.50 | <0.001 |
Complement C3, g/L | 1.10 b | 1.23 a | 1.22 a | 1.26 a | 0.01 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouda, A.; Al-Khalaifah, H.; Al-Nasser, A.; Kamel, N.N.; Gabr, S.; Eid, K.M.A. Early Feeding Strategy Mitigates Major Physiological Dynamics Altered by Heat Stress in Broilers. Animals 2024, 14, 1485. https://doi.org/10.3390/ani14101485
Gouda A, Al-Khalaifah H, Al-Nasser A, Kamel NN, Gabr S, Eid KMA. Early Feeding Strategy Mitigates Major Physiological Dynamics Altered by Heat Stress in Broilers. Animals. 2024; 14(10):1485. https://doi.org/10.3390/ani14101485
Chicago/Turabian StyleGouda, Ahmed, Hanan Al-Khalaifah, Afaf Al-Nasser, Nancy N. Kamel, Sherin Gabr, and Kamal M. A. Eid. 2024. "Early Feeding Strategy Mitigates Major Physiological Dynamics Altered by Heat Stress in Broilers" Animals 14, no. 10: 1485. https://doi.org/10.3390/ani14101485