Effects of Lactobacillus Lactis Supplementation on Growth Performance, Hematological Parameters, Meat Quality and Intestinal Flora in Growing-Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets and Experimental Design
2.2. Growth Performance
2.3. Hematological Parameters
2.4. Meat Quality
2.5. Intestinal Flora
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Hematological Parameters
3.3. Meat Quality
3.4. Intestinal Flora
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Ganzle, M. Toward rational selection criteria for selection of probiotics in pigs. In Advances in Applied Microbiology; Gadd, G.M., Sariaslani, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 107, pp. 83–112. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Nyachoti, C.M.; Kim, I.H. Evaluation of effect of probiotics mixture supplementation on growth performance, nutri ent digestibility, faecal bacterial enumeration, and noxious gas emission in weaning pigs. Ital. J. Anim. Sci. 2019, 18, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-L.; Wang, J.; Zhang, H.-J.; Wu, S.-G.; Hui, Q.-R.; Yang, C.-B.; Fang, R.-J.; Qi, G.-H. Intestinal Morphologic and Microbiota Responses to Dietary Bacillus spp. in a Broiler Chicken Model. Front. Physiol. 2019, 9, 1968. [Google Scholar] [CrossRef] [Green Version]
- Barba-Vidal, E.; Martin-Orue, S.M.; Castillejos, L. Practical aspects of the use of probiotics in pig production: A review. Livest. Sci. 2019, 223, 84–96. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Anim. Nutr. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Lan, R.; Tran, H.; Kim, I. Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecalmicroflora and noxious gas emission in weaning pig. J. Sci. Food Agric. 2017, 97, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Gawrońska, A.; Dziechciarz, P.; Horvath, A.; Szajewska, H. A randomized double-blind placebo-controlled trial of Lactobacillus GG for abdominal pain disorders in children. Aliment. Pharmacol. Ther. 2010, 25, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Al-Rabadi, G.J.; Torley, P.J.; Williams, B.A.; Bryden, W.L.; Gidley, M.J. Effect of extrusion temperature and pre-extrusion particle size on starch digestion kinetics in barley and sorghum grain extrudates. Anim. Feed Sci. Technol. 2011, 168, 267–279. [Google Scholar] [CrossRef]
- Xu, X.; Xie, C.; Liu, M.; Song, B. Effects of Lactobacillus fermented feed on growth performance, meat quality and blood antioxidant capacity of pigs. Chin. Feed 2018, 67–71. [Google Scholar] [CrossRef]
- Han, Y.; Tang, C.; Li, Y.; Yu, Y.; Zhan, T.; Zhao, Q.; Zhang, J. Effects of Dietary Supplementation with Clostridium butyricum on Growth Performance, Serum Immunity, Intestinal Morphology, and Microbiota as an Antibiotic Alternative in Weaned Piglets. Animals 2020, 10, 2287. [Google Scholar] [CrossRef]
- Wang, Y.; Cho, J.H.; Chen, Y.J.; Yoo, J.S.; Huang, Y.; Kim, H.J.; Kim, I.H. The effect of probiotic BioPlus 2B (R) on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livest. Sci. 2009, 120, 35–42. [Google Scholar] [CrossRef]
- Ginés, R.; Valdimarsdottir, T.; Sveinsdottir, K.; Thorarensen, H. Effects of rearing temperature and strain on sensory characteristics, texture, colour and fat of Arctic charr (Salvelinus alpinus). Food Qual. Pref. 2004, 15, 177–185. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Tsitrsikos, P.; Palamidi, I.; Arvaniti, A.; Mohnl, M.; Schatzmayr, G.; Fegeros, K. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 2010, 89, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Pupa, P.; Apiwatsiri, P.; Sirichokchatchawan, W.; Pirarat, N.; Maison, T.; Koontanatechanon, A.; Prapasarakul, N. Use of Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) as replacements for antibiotic-growth promotants in pigs. Sci. Rep. 2021, 11, 12028. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, S.; Qiao, S.; Yi, X.; Wang, A.; Tang, Y. Effects of Lactobacillus fermentum on growth performance and meat quality in growing-finishing pigs. Chin. J. Anim. Nutr. 2010, 22, 132–138. [Google Scholar]
- Giang, H.H.; Viet, T.Q.; Ogle, B.; Lindberg, J.E. Effects of Supplementation of Probiotics on the Performance, Nutrient Digestibility and Faecal Microflora in Growing-finishing Pigs. Asian-Australas. J. Anim. Sci. 2011, 24, 655–661. [Google Scholar] [CrossRef]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Kotler, E.; Zur, M.; Regev-Lehavi, D.; Brik, R.B.-Z.; et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics is Associated with Unique Host and Microbiome Features. Cell 2018, 174, 1388. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ha, B.D.; Kim, I.H. Effects of probiotics complex supplementation in low nutrient density diet on growth performance, nutrient digestibility, faecal microbial, and faecal noxious gas emission in growing pigs. Ital. J. Anim. Sci. 2021, 20, 163–170. [Google Scholar] [CrossRef]
- Lan, R.X.; Lee, S.I.; Kim, I.H. Effects of multistrain probiotics on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and noxious gas emission in weaning pigs. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1130–1138. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, H.; Wang, S.; Zhang, W.; Wang, S.; Wang, Y.; Ji, H. Sex-dependent changes in the microbiota profile, serum metabolism, and hormone levels of growing pigs after dietary supplementation with Lactobacillus. Appl. Microbiol. Biotechnol. 2021, 105, 4775–4789. [Google Scholar] [CrossRef]
- Zhang, T. Effects of Feeding Lactic Acid Bacteria on Growth, Carcass and Meat Quality of Finishing Pigs. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2013. [Google Scholar]
- Choi, S.C.; Ingale, S.L.; Kim, J.S.; Park, Y.K.; Kwon, I.K.; Chae, B.J. Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broilers. Anim. Feed Sci. Technol. 2013, 185, 78–84. [Google Scholar] [CrossRef]
- Sheng, Q.K.; Zhou, K.F.; Hu, H.M.; Zhao, H.B.; Zhang, Y.; Ying, W. Effect of Bacillus subtilis Natto on Meat Quality and Skatole Content in TOPIGS Pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Liu, X.; Liu, H. Effects of Dietary Probiotic (Bacillus subtilis) Supplementation on Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Profile of Broiler Chickens. Front. Vet. Sci. 2021, 8, 767802. [Google Scholar] [CrossRef]
- Fu, H.; Yu, L.; Lin, M.; Wang, J.; Xiu, Z.; Yang, S.-T. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metab. Eng. 2017, 40, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Zhang, L.; Chen, T.; Yuan, W.; Geng, Y. Butyric Acid Fermentation in Xylose and Glucose by Clostridium tyrobutyricum. Bioresources 2017, 12, 2930–2940. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, K.E.B.; Hedemann, M.S.; Laerke, H.N. The role of carbohydrates in intestinal health of pigs. Anim. Feed Sci. Technol. 2012, 173, 41–53. [Google Scholar] [CrossRef]
- Qian, L.L.; Xie, J.Y.; Gao, T.; Cai, C.B.; Jiang, S.W.; Bi, H.F.; Xie, S.S.; Cui, W.T. Targeted myostatin loss-of-function mutation increases type Ⅱ muscle fibers in Meishan pigs. J. Integr. Agric. 2022, 21, 188–198. [Google Scholar] [CrossRef]
- Cheng, H.; Song, S.; Kim, G.D. Frozen/thawed meat quality associated with muscle fiber characteristics of porcine longissimus thoracis et lumborum, psoas major, semimembranosus, and semitendinosus muscles. Sci. Rep. 2021, 11, 13354. [Google Scholar] [CrossRef] [PubMed]
- Soldatova, S.; Filatova, G. Evaluation of the Freshness of Mammalian Meat by Microstructural Changes in Muscle Tissue. Bull. Sci. Pract. 2021, 7, 83–88. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, M.; Huang, L.; Luo, Y.; Qi, L.; Ye, J.; Wu, X.; Cao, N.; Bo, J.; Liu, X.; et al. Effects of Selenium Auricularia cornea Culture Supplementation on Growth Performance, Antioxidant Status, Tissue Selenium Concentration and Meat Quality in Growing-Finishing Pigs. Animals 2021, 11, 2701. [Google Scholar] [CrossRef] [PubMed]
- Asaduzzaman, M.; Sofia, E.; Shakil, A.; Haque, N.F.; Khan, M.N.A.; Ikeda, D.; Kinoshita, S.; Abol-Munafi, A.B. Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides. Aquac. Rep. 2018, 9, 37–45. [Google Scholar] [CrossRef]
- Wang, C.J.; Lai, X.P.; Xie, J. Effect of Probiotics on the Growth Performance and Muscle Composition of Crucian Carp. Adv. Mater. Res. 2013, 655–657, 1923–1926. [Google Scholar] [CrossRef]
- Huang, G.Q.; Cao, Y.L.; Huang, X.L. Effects of Acidifier and Probiotics Combinations on Slaughter Performance and Meat Quality of the Broilers. Hubei Agric. Sci. 2013, 52, 1378–1380. [Google Scholar]
- Rybarczyk, A.; Bogusławska-WąsBogus, E.; Łupkowska, A. Effect of EM probiotic on gut microbiota, growth performance, carcass and meat quality of pigs. Livest. Sci. 2020, 241, 104206. [Google Scholar] [CrossRef]
Items | Grower (0 to 6 Weeks) | Finisher (6 to 14 Weeks) |
---|---|---|
Ingredient (%, as-fed basis) | ||
Soybean meal | 20.10 | 11.00 |
Corn | 63.30 | 59.30 |
Wheat bran | 6.00 | 15.77 |
Cottonseed meal | 1.00 | 2.30 |
DDGS | 7.50 | |
Maize germ meal | 6.00 | |
Mountain flour | 1.00 | 1.20 |
Soybean oil | 0.50 | 1.00 |
Calcium hydrophosphate | 0.40 | 0.20 |
Salt | 0.30 | 0.30 |
Calcium bicarbonate | 0.10 | |
L-lys | 0.20 | 0.26 |
1% compound premix a | 1.00 | 1.00 |
L-Thr | 0.13 | 0.07 |
DL-Met | 0.07 | |
Chemical composition (%, as-fed basis) b | ||
Digestible energy (kcal/kg) | 3542 | 3442 |
Crude protein (%) | 17.90 | 15.90 |
Calcium (%) | 0.73 | 0.73 |
Total phosphorus (%) | 0.55 | 0.45 |
Lys (%) | 0.90 | 0.89 |
Met + Cys (%) | 0.64 | 0.58 |
Item * | O-0 | O-100 | O-300 |
---|---|---|---|
Lactobacillus lactis (5.0 × 1012 CFU/g), mg/kg | 0 | 100 | 300 |
Conditioner before pelleting | MUTZ 600x2 | MUTZ 600x2 | MUTZ 600x2 |
Conditioning time, s | 25 | 25 | 25 |
Temperature, °C | 85 | 85 | 85 |
Pellets diameter, mm | 3 | 3 | 3 |
Item | O-0 | O-100 | O-300 | SEM 1 | p-Value 2 | Overall p-Value | |
---|---|---|---|---|---|---|---|
Liner | Quadratic | ||||||
Grower phase (0 to 6 weeks) | |||||||
Initial body weight, kg | 29.69 | 32.97 | 28.74 | 1.154 | 0.273 | 0.313 | 0.331 |
Final body weight, kg | 49.99 a | 59.60 b | 57.17 b | 1.564 | 0.001 | 0.160 | 0.003 |
ADG, kg/d | 0.48 a | 0.63 a,b | 0.68 b | 0.038 | 0.108 | 0.093 | 0.066 |
ADFI, kg | 1.50 a | 1.83 a,b | 1.95 b | 0.088 | 0.140 | 0.102 | 0.086 |
G:F, kg/kg | 0.32 | 0.35 | 0.35 | 0.008 | 0.241 | 0.447 | 0.388 |
Finisher phase (6 to 14 weeks) | |||||||
Initial body weight, kg | 49.99 a | 59.60 b | 57.17 b | 1.564 | 0.001 | 0.160 | 0.003 |
Final bodyweight, kg | 88.79 | 97.54 | 94.25 | 1.898 | 0.051 | 0.763 | 0.165 |
ADG, kg/d | 0.69 | 0.68 | 0.66 | 0.016 | 0.735 | 0.585 | 0.807 |
ADFI, kg | 2.03 | 2.16 | 2.06 | 0.034 | 0.146 | 0.635 | 0.336 |
G:F, kg/kg | 0.34 | 0.32 | 0.31 | 0.007 | 0.176 | 0.725 | 0.403 |
Full phase (0 to 14 weeks) | |||||||
ADG, kg/d | 0.6 | 0.66 | 0.67 | 0.018 | 0.225 | 0.339 | 0.310 |
ADFI, kg | 1.81 | 2.02 | 2.01 | 0.052 | 0.100 | 0.342 | 0.176 |
G:F, kg/kg | 0.33 | 0.33 | 0.33 | 0.004 | 0.485 | 0.849 | 0.784 |
Item | O-0 | O-100 | O-300 | SEM | p-Value | Overall p-Value | |
---|---|---|---|---|---|---|---|
Liner | Quadratic | ||||||
Grower phase (0 to 6 weeks) | |||||||
Cholesterol, mmol/L | 3.14 | 2.92 | 2.72 | 0.184 | 0.396 | 0.989 | 0.718 |
Glucose, mmol/L | 2.48 | 3.76 | 4.33 | 0.396 | 0.470 | 0.628 | 0.144 |
BUN, mmol/L | 3.31 b | 0.87 a | 0.79 a | 0.396 | 0.097 | 0.350 | 0.004 |
High density lipoprotein (HDL), mol/L | 1.69 | 1.98 | 1.84 | 0.152 | 0.029 | 0.595 | 0.765 |
Low density lipoprotein (LDL), mmol/L | 0.43 | 0.15 | 0.47 | 0.174 | 0.195 | 0.543 | 0.504 |
Malondialdehyde (MDA), nmol/mL | 6.54 c | 5.53 b | 3.97 a | 0.310 | 0.268 | 0.004 | 0.000 |
IgM, g/L | 0.07 b | 0.07 b | 0.05 a | 0.004 | 0.182 | 0.113 | 0.016 |
IgG, g/L | 2.02 | 1.95 | 1.90 | 0.055 | 0.842 | 0.540 | 0.731 |
IgA, g/L | 0.21 | 0.20 | 0.20 | 0.003 | 0.209 | 0.622 | 0.318 |
Finisher phase (6 to 14 weeks) | |||||||
Cholesterol, mmol/L | 2.98 | 3.20 | 2.94 | 0.106 | 0.870 | 0.344 | 0.607 |
Blood sugar, mmol/L | 2.48 | 3.76 | 4.33 | 0.396 | 0.470 | 0.628 | 0.144 |
BUN, mmol/L | 0.69 | 0.75 | 0.67 | 0.030 | 0.202 | 0.057 | 0.582 |
High density lipoprotein (HDL), mol/L | 2.46 | 2.54 | 2.70 | 0.136 | 0.634 | 0.174 | 0.790 |
Low density lipoprotein (LDL), mmol/L | 0.61 | 0.27 | 0.51 | 0.175 | 0.739 | 0.242 | 0.389 |
Malondialdehyde (MDA), nmol/mL | 7.52 | 5.31 | 5.13 | 0.661 | 0.077 | 0.390 | 0.273 |
IgM, g/L | 0.07 | 0.09 | 0.07 | 0.009 | 0.082 | 0.539 | 0.346 |
IgG, g/L | 1.83 | 1.82 | 1.86 | 0.067 | 0.701 | 0.801 | 0.972 |
IgA, g/L | 0.20 | 0.20 | 0.21 | 0.003 | 0.729 | 0.657 | 0.370 |
Item at 3 d (1) | O-0 | O-100 | O-300 | SEM | p-Value | Overall p-Value | |
---|---|---|---|---|---|---|---|
Liner | Quadratic | ||||||
Drip loss, % | 6.84 | 6.89 | 7.26 | 0.327 | 0.636 | 0.85 | 0.181 |
Shear force, N | 34.09 | 34.37 | 26.71 | 2.443 | 0.241 | 0.470 | 0.805 |
L * (lightness) (2) | 69.45 | 68.89 | 69.9 | 0.235 | 0.471 | 0.130 | 0.368 |
a * (redness) (3) | 1.2 | 0.96 | 0.73 | 0.125 | 0.130 | 0.995 | 0.227 |
b * (yellowness) (4) | −0.83 | −1.18 | −1.03 | 0.112 | 0.495 | 0.341 | 0.359 |
Hard, g | 319.34 a | 1106.69 b | 1580.57 c | 168.286 | 0.014 | 0.21 | 0.031 |
Springiness, g | 0.77 | 0.75 | 0.78 | 0.013 | 0.749 | 0.156 | 0.001 |
Cohesiveness, g | 0.40 a | 0.46 ab | 0.48 b | 0.015 | 0.003 | 0.32 | 0.002 |
Gumminess, g | 210.64 a | 510.00 b | 763.09 c | 83.586 | 0.011 | 0.236 | 0.003 |
Chewiness, g | 569.49 | 389.08 | 594.82 | 68.228 | 0.009 | 0.209 | 0.567 |
Resilience, g | 0.18 a | 0.18 a | 0.22 b | 0.008 | 0.000 | 0.799 | 0.014 |
Item | O-0 | O-100 | O-300 | SEM | p-Value | Overall p-Value | |
---|---|---|---|---|---|---|---|
Liner | Quadratic | ||||||
Lactobacillus lactis | |||||||
stomach | 2.00 a | 5.14 b | 7.80 c | 0.841 | 0.000 | 0.26 | 0.000 |
duodenum | 7.08 | 7.01 | 6.49 | 0.293 | 0.450 | 0.754 | 0.729 |
jejunum | 7.76 | 7.31 | 7.27 | 0.176 | 0.291 | 0.616 | 0.522 |
ileum | 7.66 a | 7.74 a,b | 8.21 b | 0.115 | 0.038 | 0.340 | 0.085 |
Escherichia coli | |||||||
stomach | 1.43 | 1.00 | 1.00 | 0.145 | 0.244 | 0.506 | 0.422 |
duodenum | 1.52 | 1.94 | 1.06 | 0.337 | 0.611 | 0.423 | 0.627 |
jejunum | 5.21 b | 1.89 a | 1.00 a | 0.690 | 0.475 | 0.423 | 0.032 |
ileum | 4.28 | 2.07 | 2.49 | 0.631 | 0.272 | 0.351 | 0.358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.; Lu, L.; Zhang, L.; Li, J.; Gu, X.; Li, J. Effects of Lactobacillus Lactis Supplementation on Growth Performance, Hematological Parameters, Meat Quality and Intestinal Flora in Growing-Finishing Pigs. Animals 2023, 13, 1247. https://doi.org/10.3390/ani13071247
Duan H, Lu L, Zhang L, Li J, Gu X, Li J. Effects of Lactobacillus Lactis Supplementation on Growth Performance, Hematological Parameters, Meat Quality and Intestinal Flora in Growing-Finishing Pigs. Animals. 2023; 13(7):1247. https://doi.org/10.3390/ani13071247
Chicago/Turabian StyleDuan, Haitao, Lizi Lu, Lei Zhang, Jun Li, Xu Gu, and Junguo Li. 2023. "Effects of Lactobacillus Lactis Supplementation on Growth Performance, Hematological Parameters, Meat Quality and Intestinal Flora in Growing-Finishing Pigs" Animals 13, no. 7: 1247. https://doi.org/10.3390/ani13071247