Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mukerji, S.; O’Dea, M.; Barton, M.; Kirkwood, R.; Lee, T.; Abraham, S. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Essays Biochem. 2017, 61, 23–35. [Google Scholar]
- WHO. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early implementation 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Agnew, A.; Wang, J.; Fanning, S.; Bearhop, S.; McMahon, B.J. Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). Ir. Vet. J. 2016, 69, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlstrom, C.A.; Bonnedahl, J.; Woksepp, H.; Hernandez, J.; Olsen, B.; Ramey, A.M. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cerdà-Cuéllar, M.; Moré, E.; Ayats, T.; Aguilera, M.; Muñoz-González, S.; Antilles, N.; Ryan, P.G.; González-Solís, J. Do humans spread zoonotic enteric bacteria in Antarctica? Sci. Total Environ. 2019, 654, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Cristóvão, F.; Alonso, C.A.; Igrejas, G.; Sousa, M.; Silva, V.; Pereira, J.E.; Lozano, C.; Cortés-Cortés, G.; Torres, C.; Poeta, P. Clonal diversity of extended-spectrum beta-lactamase producing Escherichia coli isolates in fecal samples of wild animals. FEMS Microbiol. Lett. 2017, 364, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-mediated resistance is going wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.; Silva, N.; Igrejas, G.; Rodrigues, P.; Micael, J.; Rodrigues, T.; Resendes, R.; Gonçalves, A.; Marinho, C.; Gonçalves, D.; et al. Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipelago. Anaerobe 2013, 24, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Sjölund, M.; Bonnedahl, J.; Hernandez, J.; Bengtsson, S.; Cederbrant, G.; Pinhassi, J.; Kahlmeter, G.; Olsen, B. Dissemination of multidrug-resistant bacteria into the arctic. Emerg. Infect. Dis. 2008, 14, 70–72. [Google Scholar] [CrossRef]
- Chandler, J.C.; Anders, J.E.; Blouin, N.A.; Carlson, J.C.; LeJeune, J.T.; Goodridge, L.D.; Wang, B.; Day, L.A.; Mangan, A.M.; Reid, D.A.; et al. The Role of European Starlings (Sturnus vulgaris) in the Dissemination of Multidrug-Resistant Escherichia coli among Concentrated Animal Feeding Operations. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Cole, D.; Drum, D.J.V.; Stallknecht, D.E.; White, D.G.; Lee, M.D.; Ayers, S.; Sobsey, M.; Maurer, J.J. Free-living Canada Geese and antimicrobial resistance. Emerg. Infect. Dis. 2005, 11, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correia, S.; Igrejas, G. Potential impact of antimicrobial resistance in wildlife, environment, and human health. Front. Microbiol. 2014, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, Z.B.; Zeng, Z.L.; Yang, X.W.; Huang, Y.; Liu, J.H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolejska, M.; Literak, I. Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 2019, 63, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef] [Green Version]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front. Microbiol. 2011, 2, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, A.; Baldomà, L.; Molina-López, R.A.; Martin, M.; Darwich, L. Microbiological diagnosis and antimicrobial sensitivity profiles in diseased free-living raptors. Avian Pathol. 2017, 46, 442–450. [Google Scholar] [CrossRef] [Green Version]
- Blanco, G.; López-Hernández, I.; Morinha, F.; López-Cerero, L. Intensive farming as a source of bacterial resistance to antimicrobial agents in sedentary and migratory vultures: Implications for local and transboundary spread. Sci. Total Environ. 2020, 739, 140356. [Google Scholar] [CrossRef] [PubMed]
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing Escherichia coli of CTX-M and SHV-12 Types. Microb. Ecol. 2016, 72, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Oteo, J.; Menciá, A.; Bautista, V.; Pastor, N.; Lara, N.; González-González, F.; Garciá-Penã, F.J.; Campos, J. Colonization with enterobacteriaceae-producing ESBLs, AmpCs, and OXA-48 in wild avian species, Spain 2015-2016. Microb. Drug Resist. 2018, 24, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Medio Ambiente y Medio Rural y Marino Real Decreto 139/2011, de 4 de febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. Available online: http://www.boe.es/boe/dias/2011/02/23/pdfs/BOE-A-2011-3582.pdf (accessed on 5 June 2021).
- Atterby, C.; Börjesson, S.; Ny, S.; Järhult, J.D.; Byfors, S.; Bonnedahl, J. ESBL-producing Escherichia coli in Swedish gulls—A case of environmental pollution from humans? PLoS ONE 2017, 12, e0190380. [Google Scholar] [CrossRef] [PubMed]
- Grzywaczewski, G.; Kowalczyk-Pecka, D.; Cios, S.; Bojar, W.; Junkuszew, A.; Bojar, H.; Kolejko, M. Tawny owl Strix aluco as a potential transmitter of Enterobacteriaceae epidemiologically relevant for forest service workers, nature protection service and ornithologists. Ann. Agric. Environ. Med. 2017, 24, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Badia-Boher, J.A.; Sanz-Aguilar, A.; de la Riva, M.; Gangoso, L.; van Overveld, T.; García-Alfonso, M.; Luzardo, O.P.; Suarez-Pérez, A.; Donázar, J.A. Evaluating European LIFE conservation projects: Improvements in survival of an endangered vulture. J. Appl. Ecol. 2019, 56, 1210–1219. [Google Scholar] [CrossRef]
- Suárez-pérez, A.; Corbera, J.A.; González-Martín, M.; Donázar, J.A.; Rosales, R.S.; Morales, M.; Tejedor-Junco, M.T. Microorganisms resistant to antimicrobials in wild canarian egyptian vultures (Neophron percnopterus majorensis). Animals 2020, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Stedt, J.; Bonnedahl, J.; Hernandez, J.; McMahon, B.J.; Hasan, B.; Olsen, B.; Drobni, M.; Waldenström, J. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect. Ecol. Epidemiol. 2014, 4, 21565. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Maherchandani, S.; Shringi, B.N.; Kashyap, S.K.; Sundar, K.S.G. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture. Infect. Ecol. Epidemiol. 2018, 8, 145059. [Google Scholar]
- Marinho, C.M.; Santos, T.; Gonçalves, A.; Poeta, P.; Igrejas, G. A decade-long commitment to antimicrobial resistance surveillance in Portugal. Front. Microbiol. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Gentilini, F.; Turba, M.E.; Pasquali, F.; Mion, D.; Romagnoli, N.; Zambon, E.; Terni, D.; Peirano, G.; Pitout, J.D.D.; Parisi, A.; et al. Hospitalized pets as a source of carbapenem-resistance. Front. Microbiol. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Ahlstrom, C.A.; Ramey, A.M.; Woksepp, H.; Bonnedahl, J. Repeated detection of carbapenemase-producing Escherichia coli in gulls inhabiting Alaska. Antimicrob. Agents Chemother. 2019, 63, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Dolejska, M.; Masarikova, M.; Dobiasova, H.; Jamborova, I.; Karpiskova, R.; Havlicek, M.; Carlile, N.; Priddel, D.; Cizek, A.; Literak, I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016, 71, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Guenther, S.; Semmler, T.; Stubbe, A.; Stubbe, M.; Wieler, L.H.; Schaufler, K. Chromosomally encoded ESBL genes in Escherichia coli of ST38 from Mongolian wild birds. J. Antimicrob. Chemother. 2017, 72, 1310–1313. [Google Scholar] [CrossRef]
- Guerra, B.; Fischer, J.; Helmuth, R. An emerging public health problem: Acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet. Microbiol. 2014, 171, 290–297. [Google Scholar] [CrossRef]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Vittecoq, M.; Laurens, C.; Brazier, L.; Durand, P.; Elguero, E.; Arnal, A.; Thomas, F.; Aberkane, S.; Renaud, N.; Prugnolle, F.; et al. VIM-1 carbapenemase-producing Escherichia coli in gulls from southern France. Ecol. Evol. 2017, 7, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, S.; Stegger, M.; Truswell, A.V.; Laird, T.; Jordan, D.; Abraham, R.J.; Harb, A.; Barton, M.; O’Dea, M.; Abraham, S. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J. Antimicrob. Chemother. 2019, 74, 2566–2574. [Google Scholar] [CrossRef]
- Smith, O.M.; Snyder, W.E.; Owen, J.P. Are we overestimating risk of enteric pathogen spillover from wild birds to humans? Biol. Rev. 2020, 95, 652–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenther, S.; Grobbel, M.; Lübke-Becker, A.; Goedecke, A.; Friedrich, N.D.; Wieler, L.H.; Ewers, C. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Vet. Microbiol. 2010, 144, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.S.L.; Xavier, C.; Santovenia, M.; Pruckler, J.; Stroika, S.; Joyce, K.; Gardner, T.; Fields, P.I.; McLaughlin, J.; Tauxe, R.V.; et al. Multilocus sequence typing confirms wild birds as the source of a Campylobacter outbreak associated with the consumption of raw peas. Appl. Environ. Microbiol. 2014, 80, 4540–4546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamamura, Y.; Uchida, I.; Tanaka, K.; Nakano, Y.; Izumiya, H.; Takahashi, T.; Kikuchi, N. A case study on Salmonella enterica serovar Typhimurium at a dairy farm associated with massive sparrow death. Acta Vet. Scand. 2016, 58, 4–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, K.M.; Gjoen, T.; Lunestad, B.T.; Ytrehus, B. Antimicrobial Resistance in Wildlife—Potential for Dissemination; Opinion of the Panel on Microbial Ecology; Norwegian Scientific Committee for Food and Environment: Oslo, Norway, 2018. [Google Scholar]
- Swift, B.M.C.; Bennett, M.; Waller, K.; Dodd, C.; Murray, A.; Gomes, R.L.; Humphreys, B.; Hobman, J.L.; Jones, M.A.; Whitlock, S.E.; et al. Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Sci. Total Environ. 2019, 649, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Bautista, L.M. Avian scavengers as bioindicators of antibiotic resistance due to livestock farming intensification. Int. J. Environ. Res. Public Health 2020, 17, 3620. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Categories (Code) | Antimicrobial Agents | Abbreviation and Charge of Disks |
---|---|---|
Aminoglycosides (A) | Amikacin Gentamicin Tobramycin | AK (30 µg) GM (30 µg) NN (10 µg) |
Carbapenems (Ca) | Imipenem | IPM (10 µg) |
Non-extended spectrum cephalosporins: 1st and 2nd generation cephalosporins (1–2 Ce) | Cephalexin | CEP (30 µg) |
Extended-spectrum cephalosporins: 3rd and 4th generation cephalosporins (3–4 Ce) | Cefpodoxime | CPD (10 µg) |
Fluoroquinolones (Fl) | Enrofloxacin Marbofloxacin | ENO (5 µg) MAR (5 µg) |
Folate pathway inhibitors (Fo) | Trimethoprim/ Sulfamethoxazole | SXT (1.25 µg + 23.75 µg) |
Penicillins (Pe) | Ampicillin Piperacillin | AM (10 µg) PIP (100 µg) |
Penicillins + β-lactamase inhibitors (Pβ) | Amoxicillin/ Clavulanic Acid | AMC (20 µg + 10 µg), |
Phenicols (Ph) | Chloramphenicol | C (30 µg) |
Polymyxins (Po) | Polymyxin B | PB (300 U) |
Tetracyclines (T) | Tetracycline | TE (30 µg) |
Nitrofuranes (N) | Nitrofurantoin | F/M (300 µg) |
CAT. | Fo | Pe | T | Pe | Fl | Fl | Ph | 1–2 Ce | Pβ | A | N | A | Ca | 3–4 Ce | Po | A | No. of CAT. | No. of Isolates | C * | A * | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ATB. | SXT | AM | TE | PIP | ENO | MAR | C | CEP | AMC | GM | F/M | NN | IPM | CPD | PB | AK | |||||
non-MDR | AM | 1 | 3 | 2 | 1 | ||||||||||||||||
AM | PIP | 1 | 1 | 1 | |||||||||||||||||
C | 1 | 7 | 5 | 2 | |||||||||||||||||
ENO | MAR | 1 | 1 | 1 | |||||||||||||||||
SXT | 1 | 1 | 1 | ||||||||||||||||||
TE | 1 | 3 | 3 | ||||||||||||||||||
AM | ENO | 2 | 1 | 1 | |||||||||||||||||
AM | ENO | MAR | 2 | 2 | 1 | 1 | |||||||||||||||
SXT | AM | PIP | 2 | 2 | 2 | ||||||||||||||||
SXT | AM | 2 | 8 | 8 | |||||||||||||||||
SXT | ENO | MAR | 2 | 1 | 1 | ||||||||||||||||
TE | ENO | MAR | 2 | 1 | 1 | ||||||||||||||||
SXT | GM | 2 | 1 | 1 | |||||||||||||||||
SXT | PB | 2 | 1 | 1 | |||||||||||||||||
TE | C | 2 | 3 | 1 | 2 | ||||||||||||||||
SXT | TE | 2 | 2 | 1 | 1 | ||||||||||||||||
SXT | AM | TE | PIP | 3 | 6 | 2 | 4 | ||||||||||||||
SXT | AM | TE | 3 | 1 | 1 | ||||||||||||||||
SXT | TE | ENO | MAR | 3 | 1 | 1 | |||||||||||||||
SXT | AM | C | 3 | 1 | 1 | ||||||||||||||||
SXT | AM | C | 3 | 1 | 1 | ||||||||||||||||
MDR | SXT | AM | TE | PIP | ENO | MAR | AMC | 4 | 1 | 1 | |||||||||||
AM | TE | C | CEP | 4 | 1 | 1 | |||||||||||||||
SXT | AM | TE | ENO | MAR | 4 | 1 | 1 | ||||||||||||||
SXT | AM | TE | PIP | CEP | 4 | 1 | 1 | ||||||||||||||
SXT | AM | TE | PIP | ENO | MAR | C | F/M | 4 | 1 | 1 | |||||||||||
SXT | AM | TE | PIP | ENO | MAR | 4 | 1 | 1 | |||||||||||||
SXT | AM | TE | PIP | ENO | MAR | 4 | 2 | 2 | |||||||||||||
SXT | AM | TE | PIP | ENO | 4 | 1 | 1 | ||||||||||||||
SXT | AM | TE | PIP | GM | NN | 4 | 1 | 1 | |||||||||||||
SXT | AM | TE | PIP | C | 4 | 3 | 2 | 1 | |||||||||||||
SXT | AM | TE | PIP | F/M | 4 | 1 | 1 | ||||||||||||||
SXT | AM | TE | C | 4 | 2 | 1 | 1 | ||||||||||||||
SXT | TE | C | GM | 4 | 1 | 1 | |||||||||||||||
SXT | AM | TE | PIP | C | CEP | 5 | 1 | 1 | |||||||||||||
SXT | AM | TE | PIP | ENO | C | 5 | 1 | 1 | |||||||||||||
SXT | AM | TE | PIP | ENO | MAR | NN | 5 | 1 | 1 | ||||||||||||
SXT | AM | TE | PIP | CEP | AMC | IPM | 6 | 1 | 1 | ||||||||||||
SXT | AM | TE | ENO | MAR | C | GM | F/M | 6 | 1 | 1 | |||||||||||
SXT | AM | TE | PIP | ENO | MAR | C | GM | NN | 6 | 1 | 1 | ||||||||||
SXT | AM | TE | ENO | MAR | C | CEP | AMC | 7 | 1 | 1 | |||||||||||
SXT | AM | TE | PIP | CEP | AMC | IPM | CPD | 7 | 1 | 1 | |||||||||||
SXT | AM | TE | PIP | ENO | MAR | C | AMC | F/M | 7 | 1 | 1 | ||||||||||
SXT | AM | TE | PIP | ENO | MAR | C | CEP | AMC | 9 | 1 | 1 | ||||||||||
SXT | AM | TE | PIP | ENO | CEP | AMC | F/M | IPM | CPD | 9 | 1 | 1 | |||||||||
SXT | AM | TE | PIP | ENO | MAR | C | CEP | AMC | GM | F/M | NN | IPM | CPD | PB | AK | 12 | 1 | 1 | |||
SUCEPTIBLE TO ALL ANTIMICROBIALS TESTED | 12 | 26 | 18 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Tejedor-Junco, M.T. Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals 2021, 11, 1692. https://doi.org/10.3390/ani11061692
Suárez-Pérez A, Corbera JA, González-Martín M, Tejedor-Junco MT. Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals. 2021; 11(6):1692. https://doi.org/10.3390/ani11061692
Chicago/Turabian StyleSuárez-Pérez, Alejandro, Juan Alberto Corbera, Margarita González-Martín, and María Teresa Tejedor-Junco. 2021. "Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)" Animals 11, no. 6: 1692. https://doi.org/10.3390/ani11061692