Clinical Evaluation of Microbial Communities and Associated Biofilms with Breast Augmentation Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Institutional Review Board Statement
2.2. Microbial Profiling
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.G.; Litton, I.; Rinde, H. Economic impact of biofilms on treatment costs. In Biofilms, Infection, and Antimicrobial Therapy; CRC Press: Boca Raton, FL, USA, 2005; pp. 39–56. [Google Scholar]
- Cámara, M.; Green, W.; MacPhee, C.E.; Rakowska, P.D.; Raval, R.; Richardson, M.C.; Slater-Jefferies, J.; Steventon, K.; Webb, J.S. Economic significance of biofilms: A multidisciplinary and cross-sectoral challenge. npj Biofilms Microbiomes 2022, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.B.; Allen, R.A.; Kannan, K.; Fransko, L. The Presence and Impact of Bacteria and Biofilms in Chronic Skin and Systemic Diseases. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Chiniforush, N.; Partoazar, A.; Goudarzi, R. The role of bacterial infections in rheumatoid arthritis development and novel therapeutic interventions: Focus on oral infections. J. Clin. Lab. Anal. 2023, 37, e24897. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.K.; Tan, M.-W. Bacterial biofilms in the human body: Prevalence and impacts on health and disease. Front. Cell. Infect. Microbiol. 2023, 13, 1237164. [Google Scholar] [CrossRef]
- Nicholson, J.S.; Landry, K.S. Oral dysbiosis and neurodegenerative diseases: Correlations and potential causations. Microorganisms 2022, 10, 1326. [Google Scholar] [CrossRef]
- Shineh, G.; Mobaraki, M.; Perves Bappy, M.J.; Mills, D.K. Biofilm formation, and related impacts on healthcare, food processing and packaging, industrial manufacturing, marine industries, and sanitation–A review. Appl. Microbiol. 2023, 3, 629–665. [Google Scholar] [CrossRef]
- Kyei, S.K.; Asante-Sackey, D.; Danso-Boateng, E. Biofouling in the petroleum industry. In Advances in Nanotechnology for Marine Antifouling; Elsevier: Amsterdam, The Netherlands, 2023; pp. 165–191. [Google Scholar]
- Landry, K.S.; Morey, J.M.; Bharat, B.; Haney, N.M.; Panesar, S.S. Biofilms—Impacts on human health and its relevance to space travel. Microorganisms 2020, 8, 998. [Google Scholar] [CrossRef]
- Philipp, L.-A.; Bühler, K.; Ulber, R.; Gescher, J. Beneficial applications of biofilms. Nat. Rev. Microbiol. 2023, 22, 276–290. [Google Scholar] [CrossRef]
- Velmourougane, K.; Thapa, S.; Prasanna, R. Prospecting microbial biofilms as climate smart strategies for improving plant and soil health: A review. Pedosphere 2023, 33, 129–152. [Google Scholar] [CrossRef]
- Verma, S.; Kuila, A.; Jacob, S. Role of biofilms in waste water treatment. Appl. Biochem. Biotechnol. 2023, 195, 5618–5642. [Google Scholar] [CrossRef] [PubMed]
- Di Via Ioschpe, A.; Oleru, O.O.; Brozynski, M.; Seyidova, N.; Henderson, P.W. Contextualizing the Impact of Pop Culture on Breast Implant Illness and its Medical Relevance. Aesthetic Plast. Surg. 2024, 48, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Pelc, Z.; Skorzewska, M.; Kurylcio, A.; Olko, P.; Dryka, J.; Machowiec, P.; Maksymowicz, M.; Rawicz-Pruszynski, K.; Polkowski, W. Current Challenges in Breast Implantation. Medicina 2021, 57, 1214. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, P.; Hedén, P.; Behr, B.; Wallner, C. Controllable factors to reduce the rate of complications in primary breast augmentation: A review of the literature. Aesthetic Plast. Surg. 2021, 45, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Schoberleitner, I.; Baier, L.; Lackner, M.; Zenz, L.-M.; Coraça-Huber, D.C.; Ullmer, W.; Damerum, A.; Faserl, K.; Sigl, S.; Steinkellner, T. Surface Topography, Microbial Adhesion, and Immune Responses in Silicone Mammary Implant-Associated Capsular Fibrosis. Int. J. Mol. Sci. 2024, 25, 3163. [Google Scholar] [CrossRef]
- Doloff, J.C.; Veiseh, O.; de Mezerville, R.; Sforza, M.; Perry, T.A.; Haupt, J.; Jamiel, M.; Chambers, C.; Nash, A.; Aghlara-Fotovat, S. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Eng. 2021, 5, 1115–1130. [Google Scholar] [CrossRef]
- Vinci, V.; Belgiovine, C.; Janszen, G.; Agnelli, B.; Pellegrino, L.; Calcaterra, F.; Cancellara, A.; Ciceri, R.; Benedetti, A.; Cardenas, C. Breast implant surface topography triggers a chronic-like inflammatory response. Life Sci. Alliance 2024, 7. [Google Scholar] [CrossRef]
- Ajdic, D.; Zoghbi, Y.; Gerth, D.; Panthaki, Z.J.; Thaller, S. The relationship of bacterial biofilms and capsular contracture in breast implants. Aesthetic Surg. J. 2016, 36, 297–309. [Google Scholar] [CrossRef]
- del Pozo, J.L.; Auba, C. Role of biofilms in breast implant associated infections and capsular contracture. In Biofilm-Based Healthcare-Associated Infections Volume II; Springer: Cham, Switzerland, 2014; pp. 53–67. [Google Scholar]
- Crowe, S.A.; Simister, R.L.; Spence, J.S.; Kenward, P.A.; Van Slyke, A.C.; Lennox, P.; Carr, N. Microbial community compositions in breast implant biofilms associated with contracted capsules. PLoS ONE 2021, 16, e0249261. [Google Scholar] [CrossRef]
- Flores, T.; Kerschbaumer, C.; Jaklin, F.J.; Rohrbacher, A.; Weber, M.; Luft, M.; Aspöck, C.; Ströbele, B.; Kitzwögerer, M.; Lumenta, D.B. Gram-Positive Bacteria Increase Breast Implant-Related Complications: Prospective Analysis of 100 Revised Implants. Plast. Reconstr. Surg. 2024, 153, 76–89. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; He, Y.; Lv, Z.; Liang, Z.; Chen, J.; Li, P.; Liu, J.; Yang, H.; Tao, A. Exploring the role of Staphylococcus aureus in inflammatory diseases. Toxins 2022, 14, 464. [Google Scholar] [CrossRef] [PubMed]
- Mias, C.; Mengeaud, V.; Bessou-Touya, S.; Duplan, H. Recent advances in understanding inflammatory acne: Deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Tipton, C.D.; Wolcott, R.D.; Sanford, N.E.; Miller, C.; Pathak, G.; Silzer, T.K.; Sun, J.; Fleming, D.; Rumbaugh, K.P.; Little, T.D. Patient genetics is linked to chronic wound microbiome composition and healing. PLoS Pathog. 2020, 16, e1008511. [Google Scholar] [CrossRef] [PubMed]
- Liss, M.A.; Reveles, K.R.; Tipton, C.D.; Gelfond, J.; Tseng, T. Comparative Effectiveness Randomized Clinical Trial Using Next-generation Microbial Sequencing to Direct Prophylactic Antibiotic Choice Before Urologic Stone Lithotripsy Using an Interprofessional Model. Eur. Urol. Open Sci. 2023, 57, 74–83. [Google Scholar] [CrossRef]
- Goswami, K.; Clarkson, S.; Phillips, C.D.; Dennis, D.A.; Klatt, B.A.; O’Malley, M.J.; Smith, E.L.; Gililland, J.M.; Pelt, C.E.; Peters, C.L. An enhanced understanding of culture-negative periprosthetic joint infection with next-generation sequencing: A multicenter study. JBJS 2022, 104, 1523–1529. [Google Scholar] [CrossRef]
- Lowman, M.E.; Tipton, C.D.; Labordère, A.L.; Brown, J.A. Equine sinusitis aetiology is linked to sinus microbiome by amplicon sequencing. Equine Vet. J. 2023, 55, 798–807. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- López-Aladid, R.; Fernández-Barat, L.; Alcaraz-Serrano, V.; Bueno-Freire, L.; Vázquez, N.; Pastor-Ibáñez, R.; Palomeque, A.; Oscanoa, P.; Torres, A. Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Sci. Rep. 2023, 13, 3974. [Google Scholar] [CrossRef]
- Na, H.S.; Song, Y.; Yu, Y.; Chung, J. Comparative analysis of primers used for 16S rRNA gene sequencing in oral microbiome studies. Methods Protoc. 2023, 6, 71. [Google Scholar] [CrossRef]
- Hoffman, C.; Siddiqui, N.Y.; Fields, I.; Gregory, W.T.; Simon, H.M.; Mooney, M.A.; Wolfe, A.J.; Karstens, L. Species-level resolution of female bladder microbiota from 16S rRNA amplicon sequencing. Msystems 2021, 6, e00518-21. [Google Scholar] [CrossRef]
- Pinto, R.M.; Soares, F.A.; Reis, S.; Nunes, C.; Van Dijck, P. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms. Front. Microbiol. 2020, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; You, J.; Yin, S.; Yang, H.; He, S.; Feng, L.; Li, J.; Zhao, Q.; Wei, L. Extracellular polymeric substances—Antibiotics interaction in activated sludge: A review. Environ. Sci. Ecotechnol. 2023, 13, 100212. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhou, Z.-J.; Wen, H.-Q.; Chen, F.-F.; Pan, Y.; Tang, Q.; Yu, H.-Q. Deciphering the Roles of Extracellular Polymeric Substances (EPS) in Shaping Disinfection Kinetics through Permanent Removal via Genetic Disruption. Environ. Sci. Technol. 2024, 58, 6552–6563. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.; Lemos, M.; Mergulhão, F.; Melo, L.; Simões, M. Antimicrobial resistance to disinfectants in biofilms. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 3, 826–834. [Google Scholar]
- Borges, A.; Meireles, A.; Mergulhão, F.; Melo, L.; Simões, M. Biofilm control with enzymes. In Recent Trends in Biofilm Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 249–271. [Google Scholar]
- Chen, Z.; Wang, Z.; Ren, J.; Qu, X. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 2018, 51, 789–799. [Google Scholar] [CrossRef]
- Landry, K.S.; Levin, R.E. Purification and characterization of iso-ribonucleases from a novel thermophilic fungus. Int. J. Mol. Sci. 2014, 15, 944–957. [Google Scholar] [CrossRef]
- Landry, K.S.; Vu, A.; Levin, R.E. Purification of an inducible DNase from a thermophilic fungus. Int. J. Mol. Sci. 2014, 15, 1300–1314. [Google Scholar] [CrossRef]
- Landry, K.S.; Levin, R.E. Characterization of a recently purified thermophilic DNase from a novel thermophilic fungus. Appl. Biochem. Biotechnol. 2014, 173, 1587–1596. [Google Scholar] [CrossRef]
- Harper, D.R.; Parracho, H.M.; Walker, J.; Sharp, R.; Hughes, G.; Werthén, M.; Lehman, S.; Morales, S. Bacteriophages and biofilms. Antibiotics 2014, 3, 270–284. [Google Scholar] [CrossRef]
- Chan, B.K.; Abedon, S.T. Bacteriophages and their enzymes in biofilm control. Curr. Pharm. Des. 2015, 21, 85–99. [Google Scholar] [CrossRef]
- Parasion, S.; Kwiatek, M.; Gryko, R.; Mizak, L.; Malm, A. Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol 2014, 63, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Hanna, S.; Manuel, S.; Baker, J.; Diab, J.; Clement, Z. Cutibacterium acnes in breast implants: An underestimated bacterial infection and review of the literature. J. Surg. Case Rep. 2023, 2023, rjad042. [Google Scholar] [CrossRef] [PubMed]
- Bayston, R. Capsule formation around breast implants. JPRAS Open 2022, 31, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Gharamti, A.A.; Kanafani, Z.A. Cutibacterium (formerly Propionibacterium) acnes infections associated with implantable devices. Expert Rev. Anti-Infect. Ther. 2017, 15, 1083–1094. [Google Scholar] [CrossRef]
- Banuelos, J.; Abu-Ghname, A.; Asaad, M.; Vyas, K.; Sohail, M.R.; Sharaf, B. Microbiology of implant-based breast reconstruction infections: A systematic review. Ann. Plast. Surg. 2020, 85, 194–201. [Google Scholar] [CrossRef]
- Karau, M.J.; Greenwood-Quaintance, K.E.; Schmidt, S.M.; Tran, N.V.; Convery, P.A.; Jacobson, S.R.; Bite, U.; Clay, R.P.; Petty, P.M.; Johnson, C.H. Microbial biofilms and breast tissue expanders. BioMed Res. Int. 2013, 2013, 254940. [Google Scholar] [CrossRef]
- Del Pozo, J.L.; Tran, N.V.; Petty, P.M.; Johnson, C.H.; Walsh, M.F.; Bite, U.; Clay, R.P.; Mandrekar, J.N.; Piper, K.E.; Steckelberg, J.M. Pilot study of association of bacteria on breast implants with capsular contracture. J. Clin. Microbiol. 2009, 47, 1333–1337. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef]
- Chu, D.M.; Ma, J.; Prince, A.L.; Antony, K.M.; Seferovic, M.D.; Aagaard, K.M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 2017, 23, 314–326. [Google Scholar] [CrossRef]
- Dréno, B.; Araviiskaia, E.; Berardesca, E.; Gontijo, G.; Sanchez Viera, M.; Xiang, L.; Martin, R.; Bieber, T. Microbiome in healthy skin, update for dermatologists. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2038–2047. [Google Scholar] [CrossRef]
- Dréno, B.; Pécastaings, S.; Corvec, S.; Veraldi, S.; Khammari, A.; Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Fournière, M.; Latire, T.; Souak, D.; Feuilloley, M.G.; Bedoux, G. Staphylococcus epidermidis and Cutibacterium acnes: Two major sentinels of skin microbiota and the influence of cosmetics. Microorganisms 2020, 8, 1752. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Sun, M.; Qi, R.-Q.; Zhang, L.; Zhai, J.-L.; Hong, Y.-X.; Song, B.; Chen, H.-D.; Gao, X.-H. High Staphylococcus epidermidis colonization and impaired permeability barrier in facial seborrheic dermatitis. Chin. Med. J. 2017, 130, 1662–1669. [Google Scholar] [CrossRef]
- Claudel, J.-P.; Auffret, N.; Leccia, M.-T.; Poli, F.; Corvec, S.; Dréno, B. Staphylococcus epidermidis: A potential new player in the physiopathology of acne? Dermatology 2019, 235, 287–294. [Google Scholar] [CrossRef]
- Lajevardi, S.S.; Rastogi, P.; Isacson, D.; Deva, A.K. What are the likely causes of breast implant associated anaplastic large cell lymphoma (BIA-ALCL)? JPRAS Open 2022, 32, 34–42. [Google Scholar] [CrossRef]
- Headon, H.; Kasem, A.; Mokbel, K. Capsular contracture after breast augmentation: An update for clinical practice. Arch. Plast. Surg. 2015, 42, 532–543. [Google Scholar]
- Rieger, U.; Mesina, J.; Kalbermatten, D.; Haug, M.; Frey, H.; Pico, R.; Frei, R.; Pierer, G.; Lüscher, N.; Trampuz, A. Bacterial biofilms and capsular contracture in patients with breast implants. J. Br. Surg. 2013, 100, 768–774. [Google Scholar] [CrossRef]
- Tamboto, H.; Vickery, K.; Deva, A.K. Subclinical (biofilm) infection causes capsular contracture in a porcine model following augmentation mammaplasty. Plast. Reconstr. Surg. 2010, 126, 835–842. [Google Scholar] [CrossRef]
- Adams, W.P., Jr.; Conner, W.C.H.; Barton, F.E., Jr.; Rohrich, R.J. Optimizing breast-pocket irrigation: The post-betadine era. Plast. Reconstr. Surg. 2001, 107, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.N.; Heiman, A.J.; Patel, A. Implants and breast pocket irrigation: Outcomes of antibiotic, antiseptic, and saline irrigation. Aesthetic Surg. J. 2022, 42, NP102–NP111. [Google Scholar] [CrossRef] [PubMed]
- Brindle, C.T.; Porter, S.; Bijlani, K.; Arumugam, S.; Matias, R.; Najafi, R.; Fisher, J. Preliminary results of the use of a stabilized hypochlorous acid solution in the management of Ralstonia pickettii biofilm on silicone breast implants. Aesthetic Surg. J. 2018, 38, S52–S61. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Mujadzic, M.; Kaswan, S.; Halpern, J.; Van Natta, B.; Lund, H., Jr. Preliminary outcomes of hypochlorous acid as an adjunct for pocket irrigation in revision aesthetic breast surgery. Aesthetic Surg. J. 2021, 41, NP152–NP158. [Google Scholar] [CrossRef]
- Hu, H.; Sleiman, J.; Johani, K.; Vickery, K. Hypochlorous acid versus povidone-iodine containing irrigants: Which antiseptic is more effective for breast implant pocket irrigation? Aesthetic Surg. J. 2018, 38, 723–727. [Google Scholar] [CrossRef]
- Serbanescu, M.A.; Apple, C.G.; Fernandez-Moure, J.S. Role of resident microbial communities in biofilm-related implant infections: Recent insights and implications. Surg. Infect. 2023, 24, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Emanuel, C.; Cutting, K.F.; Williams, D.W. Microbiology of the skin and the role of biofilms in infection. Int. Wound J. 2012, 9, 14–32. [Google Scholar] [CrossRef]
- Srivastava, S.; Suresh, G.; Gupta, A.K.; Singh, A. Microbial biofilms and the skin microbiome. In Microbial Biofilms; Elsevier: Amsterdam, The Netherlands, 2024; pp. 167–176. [Google Scholar]
- Glicksman, C.; McGuire, P.; Kadin, M.; Barnes, K.; Wixtrom, R.; Lawrence, M.; Haws, M.; Ferenz, S.; Sung, C.J.; Hamilton, R.G. Longevity of post-explantation systemic symptom improvement and potential etiologies: Findings from the ASERF systemic symptoms in women–biospecimen analysis study: Part 4. Aesthetic Surg. J. 2023, 43, 1194–1204. [Google Scholar] [CrossRef]
- Wixtrom, R.; Glicksman, C.; Kadin, M.; Lawrence, M.; Haws, M.; Ferenz, S.; Sung, J.; McGuire, P. Heavy metals in breast implant capsules and breast tissue: Findings from the systemic symptoms in women–biospecimen analysis study: Part 2. Aesthetic Surg. J. 2022, 42, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Glicksman, C.; McGuire, P.; Kadin, M.; Lawrence, M.; Haws, M.; Newby, J.; Ferenz, S.; Sung, J.; Wixtrom, R. Impact of capsulectomy type on post-explantation systemic symptom improvement: Findings from the ASERF systemic symptoms in women-biospecimen analysis study: Part 1. Aesthetic Surg. J. 2022, 42, 809–819. [Google Scholar] [CrossRef]
- Bauer, T.M.; Gallagher, K.A. Biofilm-derived oxylipin 10-HOME mediated immune response in women with breast implants. J. Clin. Investig. 2024, 134. [Google Scholar] [CrossRef]
- Martínez, E.; Campos-Gómez, J. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence. Nat. Commun. 2016, 7, 13823. [Google Scholar] [CrossRef]
- Ringeval, A.; Farhat, S.; Fedosov, A.; Gerdol, M.; Greco, S.; Mary, L.; Modica, M.V.; Puillandre, N. DeTox: A pipeline for the detection of toxins in venomous organisms. Brief. Bioinform. 2024, 25, bbae094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Why do we study animal toxins? Zool. Res. 2015, 36, 183. [Google Scholar]
- Fasano, A. Toxins and the gut: Role in human disease. Gut 2002, 50, iii9–iii14. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Goldblatt, J. MTHFR genetic testing: Controversy and clinical implications. Aust. Fam. Phys. 2016, 45, 237–240. [Google Scholar]
- Gilbody, S.; Lewis, S.; Lightfoot, T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: A HuGE review. Am. J. Epidemiol. 2007, 165, 1–13. [Google Scholar] [CrossRef]
- Sears, M.E.; Genuis, S.J. Environmental determinants of chronic disease and medical approaches: Recognition, avoidance, supportive therapy, and detoxification. J. Environ. Public Health 2012, 2012, 356798. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P. Plant responses to environmental stresses—From gene to biotechnology. AoB Plants 2017, 9, plx025. [Google Scholar] [CrossRef]
- Steinberg, C.E.; Stürzenbaum, S.R.; Menzel, R. Genes and environment—Striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci. Total Environ. 2008, 400, 142–161. [Google Scholar] [CrossRef]
- Suzuki, T.; Hidaka, T.; Kumagai, Y.; Yamamoto, M. Environmental pollutants and the immune response. Nat. Immunol. 2020, 21, 1486–1495. [Google Scholar] [CrossRef]
- Drinane, J.J.; Bergman, R.S.; Folkers, B.L.; Kortes, M.J. Revisiting triple antibiotic irrigation of breast implant pockets: A placebo-controlled single practice cohort study. Plast. Reconstr. Surg.–Glob. Open 2013, 1, e55. [Google Scholar]
- Drinane, J.J.; Kortes, M.J.; Bergman, R.S.; Folkers, B.L. Evaluation of antibiotic irrigation versus saline irrigation in reducing the long-term incidence and severity of capsular contraction after primary augmentation mammoplasty. Ann. Plast. Surg. 2016, 77, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Calobrace, M.B.; Stevens, W.G.; Capizzi, P.J.; Cohen, R.; Godinez, T.; Beckstrand, M. Risk factor analysis for capsular contracture: A 10-year Sientra study using round, smooth, and textured implants for breast augmentation. Plast. Reconstr. Surg. 2018, 141, 20S–28S. [Google Scholar] [CrossRef] [PubMed]
- Araco, A.; Gravante, G.; Araco, F.; Delogu, D.; Cervelli, V.; Walgenbach, K. Infections of breast implants in aesthetic breast augmentations: A single-center review of 3002 patients. Aesthetic Plast. Surg. 2007, 31, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, B.; Dempsey, P.; Schnur, P.; Tofield, J. Capsular contracture: A prospective study of the effect of local antibacterial agents. Plast. Reconstr. Surg. 1986, 77, 919–930. [Google Scholar] [CrossRef]
- Gowda, A.U.; Chopra, K.; Brown, E.N.; Slezak, S.; Rasko, Y. Preventing breast implant contamination in breast reconstruction: A national survey of current practice. Ann. Plast. Surg. 2017, 78, 153–156. [Google Scholar] [CrossRef]
- Epps, M.T.; Langsdon, S.; Pels, T.K.; Noyes, V.; Levine, D.; Thurston, T.E.; Spratt, H.G.; Brzezienski, M.A. Pocket irrigation and technique during reconstructive surgery: An American Society of Plastic Surgery survey of current practice. Ann. Plast. Surg. 2019, 82, S427–S432. [Google Scholar] [CrossRef]
- Chopra, K.; Gowda, A.U.; McNichols, C.H.; Brown, E.N.; Slezak, S.; Rasko, Y. Antimicrobial prophylaxis practice patterns in breast augmentation: A national survey of current practice. Ann. Plast. Surg. 2017, 78, 629–632. [Google Scholar] [CrossRef]
- Morkuzu, S.; Ozdemir, M.; Leach, G.A.; Kanapathy, M.; Mosahebi, A.; Reid, C.M. Keller funnel efficacy in “no touch” breast augmentation and reconstruction: A systematic review. Plast. Reconstr. Surg.–Glob. Open 2022, 10, e4676. [Google Scholar] [CrossRef]
- Newman, A.N.; Davison, S.P. Effect of Keller funnel on the rate of capsular contracture in periareolar breast augmentation. Plast. Reconstr. Surg.–Glob. Open 2018, 6, e1834. [Google Scholar] [CrossRef]
- Moyer, H.R.; Ghazi, B.; Saunders, N.; Losken, A. Contamination in smooth gel breast implant placement: Testing a funnel versus digital insertion technique in a cadaver model. Aesthetic Surg. J. 2012, 32, 194–199. [Google Scholar] [CrossRef]
- Chow, O.; Hu, H.; Lajevardi, S.S.; Deva, A.K.; Atkinson, R.L. Preventing bacterial contamination of breast implants using infection mitigation techniques: An in vitro study. Aesthetic Surg. J. 2024, 44, 605–611. [Google Scholar] [CrossRef]
- Sinha, S.; Lin, G.; Ferenczi, K. The skin microbiome and the gut-skin axis. Clin. Dermatol. 2021, 39, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.R.; Akter, S.; Tamanna, S.K.; Mazumder, L.; Esti, I.Z.; Banerjee, S.; Akter, S.; Hasan, M.R.; Acharjee, M.; Hossain, M.S. Impact of gut microbiome on skin health: Gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022, 14, 2096995. [Google Scholar] [CrossRef] [PubMed]
- Calvano, S.E.; Xiao, W.; Richards, D.R.; Felciano, R.M.; Baker, H.V.; Cho, R.J.; Chen, R.O.; Brownstein, B.H.; Cobb, J.P.; Tschoeke, S.K. A network-based analysis of systemic inflammation in humans. Nature 2005, 437, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Shin, J.; Cho, Y.; Kim, K.-P. Dietary patterns associated with sebum content, skin hydration and pH, and their sex-dependent differences in healthy Korean adults. Nutrients 2019, 11, 619. [Google Scholar] [CrossRef]
- Melnik, B.C. Linking diet to acne metabolomics, inflammation, and comedogenesis: An update. Clin. Cosmet. Investig. Dermatol. 2015, 8, 371–388. [Google Scholar] [CrossRef]
- Boelsma, E.; Van de Vijver, L.P.; Goldbohm, R.A.; Klöpping-Ketelaars, I.A.; Hendriks, H.F.; Roza, L. Human skin condition and its associations with nutrient concentrations in serum and diet. Am. J. Clin. Nutr. 2003, 77, 348–355. [Google Scholar] [CrossRef]
- Nayak, R.R. Western diet and psoriatic-like skin and joint diseases: A potential role for the gut microbiota. J. Investig. Dermatol. 2021, 141, 1630–1632. [Google Scholar] [CrossRef]
- Jena, P.K.; Sheng, L.; Mcneil, K.; Chau, T.Q.; Yu, S.; Kiuru, M.; Fung, M.A.; Hwang, S.T.; Wan, Y.-J.Y. Long-term Western diet intake leads to dysregulated bile acid signaling and dermatitis with Th2 and Th17 pathway features in mice. J. Dermatol. Sci. 2019, 95, 13–20. [Google Scholar] [CrossRef]
- Brandwein, M.; Katz, I.; Katz, A.; Kohen, R. Beyond the gut: Skin microbiome compositional changes are associated with BMI. Hum. Microbiome J. 2019, 13, 100063. [Google Scholar] [CrossRef]
- Ilaria, P.; Ersilia, T.; Nicoletta, B.; Federica, T.; Andrea, V.; Nevena, S.; Concetta, P. The role of the Western diet on atopic dermatitis: Our experience and review of the current literature. Nutrients 2023, 15, 3896. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western diet and the immune system: An inflammatory connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
Characteristic | N = 203 |
---|---|
Median age | 43 (Q1 = 37, Q3 = 50) |
Left capsule | 103 (51%) |
Implant texture | |
Smooth | 60 (71%) |
Textured | 25 (29%) |
Missing | 118 |
Implant filling | |
Gel | 65 (49%) |
Saline | 67 (51%) |
Missing | 71 |
Ruptured | 13 (6.4%) |
Df | Sum Sq | Mean Sq | f-Value | p-Value | R2 | Sig | |
---|---|---|---|---|---|---|---|
Texture | 1 | 0.90 | 0.90 | 0.56 | 0.465 | 0.003 | |
Filling | 1 | 9.26 | 9.26 | 5.75 | 0.028 | 0.027 | * |
Age | 1 | 17.65 | 17.65 | 10.96 | 0.004 | 0.051 | ** |
Patient | 57 | 291.55 | 5.11 | 3.17 | 0.004 | 0.837 | ** |
Residuals | 18 | 29.00 | 1.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitfield, R.; Tipton, C.D.; Diaz, N.; Ancira, J.; Landry, K.S. Clinical Evaluation of Microbial Communities and Associated Biofilms with Breast Augmentation Failure. Microorganisms 2024, 12, 1830. https://doi.org/10.3390/microorganisms12091830
Whitfield R, Tipton CD, Diaz N, Ancira J, Landry KS. Clinical Evaluation of Microbial Communities and Associated Biofilms with Breast Augmentation Failure. Microorganisms. 2024; 12(9):1830. https://doi.org/10.3390/microorganisms12091830
Chicago/Turabian StyleWhitfield, Robert, Craig D. Tipton, Niccole Diaz, Jacob Ancira, and Kyle S. Landry. 2024. "Clinical Evaluation of Microbial Communities and Associated Biofilms with Breast Augmentation Failure" Microorganisms 12, no. 9: 1830. https://doi.org/10.3390/microorganisms12091830