Non-O1/Non-O139 Vibrio cholerae—An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis
Abstract
:1. Introduction
2. Stage 1: Survival in the Gastrointestinal Tract
2.1. Acid Tolerance Response
2.2. Adaptation to Reactive Nitrogen and Oxygen Species
2.3. Resistance Nodulation Division (RND) Efflux Pump
2.4. Outer Membrane Protein (OMP)
2.5. Biofilm Formation
2.6. Type IV Secretion System (T6SS)
3. Stage 2: Localization and Penetration of the Mucus Layer in the Small Intestine
3.1. Motility via Flagella
3.2. Chemotaxis
3.3. Vibrio Pathogenicity Island 2 (VPI-2)
3.4. Hemagglutinin Protease HapA
4. Stage 3: Intestinal Epithelial Cell Colonization
4.1. Type IV Pili
4.2. Type III Secretion System (T3SS)
5. Stage 4: Virulence Factor Expression
5.1. Toxin Expression
5.2. Type III Secretion System (T3SS)
Bacteremia Caused by NOVCs
6. Stage 5: Detachment from the Epithelial Cells
7. Multifunctional Regulation System
8. Schematic Infection Pathway of NOVC
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banerjee, R.; Das, B.; Nair, G.B.; Basak, S. Dynamics in genome evolution of Vibrio cholerae. Infect. Genet. Evol. 2014, 23, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Faruque, S.M.; Albert, M.J.; Mekalanos, J.J. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 1998, 62, 1301–1314. [Google Scholar] [CrossRef]
- WHO. Multi-Country Outbreak of Cholera, External Situation Report n.10; WHO: Geneva, Switzerland, 2024.
- Ottaviani, D.; Medici, L.; Talevi, G.; Napoleoni, M.; Serratore, P.; Zavatta, E.; Bignami, G.; Masini, L.; Chierichetti, S.; Fisichella, S. Molecular characterization and drug susceptibility of non-O1/O139 V. cholerae strains of seafood, environmental and clinical origin, Italy. Food Microbiol. 2018, 72, 82–88. [Google Scholar] [CrossRef]
- Amato, E.; Riess, M.; Thomas-Lopez, D.; Linkevicius, M.; Pitkänen, T.; Wołkowicz, T.; Rjabinina, J.; Jernberg, C.; Hjertqvist, M.; MacDonald, E. Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018. Eurosurveillance 2022, 27, 2101088. [Google Scholar] [CrossRef] [PubMed]
- Roux, F.L.; Wegner, K.M.; Baker-Austin, C.; Vezzulli, L.; Osorio, C.R.; Amaro, C.; Ritchie, J.M.; Defoirdt, T.; Destoumieux-Garzón, D.; Blokesch, M. The emergence of Vibrio pathogens in Europe: Ecology, evolution, and pathogenesis (Paris, 11–12th March 2015). Front. Microbiol. 2015, 6, 830. [Google Scholar] [CrossRef] [PubMed]
- BfR. Bakterielle Lebensmittelinfektionen durch Vibrionen: Gesundheitliche Bewertung zum Vorkommen von Vibrio spp. (Nicht-Cholera-Vibrionen) in Lebensmitteln: Stellungnahme Nr. 011/2022 des BfR vom 13. April 2022. BfR-Stellungnahmen 2022, 2022, 1–39. [Google Scholar] [CrossRef]
- Deshayes, S.; Daurel, C.; Cattoir, V.; Parienti, J.-J.; Quilici, M.-L.; de La Blanchardière, A. Non-O1, non-O139 Vibrio cholerae bacteraemia: Case report and literature review. Springerplus 2015, 4, 575. [Google Scholar] [CrossRef]
- Schirmeister, F.; Dieckmann, R.; Bechlars, S.; Bier, N.; Faruque, S.; Strauch, E. Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 767–778. [Google Scholar] [CrossRef]
- Restrepo, D.; Huprikar, S.S.; VanHorn, K.; Bottone, E.J. O1 and non-O1 Vibrio cholerae bacteremia produced by hemolytic strains. Diagn. Microbiol. Infect. Dis. 2006, 54, 145–148. [Google Scholar] [CrossRef]
- Barceló, C.; Sánchez, N.; Martínez, B. Vibrio cholerae non 01 sepsis in a healthy patient: Review of reported cases in Spain. Rev. Clin. Esp. 1998, 198, 850–851. [Google Scholar]
- Ottaviani, D.; Leoni, F.; Rocchegiani, E.; Santarelli, S.; Masini, L.; Di Trani, V.; Canonico, C.; Pianetti, A.; Tega, L.; Carraturo, A. Prevalence and virulence properties of non-O1 non-O139 Vibrio cholerae strains from seafood and clinical samples collected in Italy. Int. J. Food Microbiol. 2009, 132, 47–53. [Google Scholar] [CrossRef]
- Albuquerque, A.; Cardoso, H.; Pinheiro, D.; Macedo, G. Vibrio cholerae non-O1 and non-O139 bacteremia in a non-traveler Portuguese cirrhotic patient: First case report. Gastroenterol. Y Hepatol. 2013, 36, 309–310. [Google Scholar] [CrossRef]
- Dutta, D.; Chowdhury, G.; Pazhani, G.P.; Guin, S.; Dutta, S.; Ghosh, S.; Rajendran, K.; Nandy, R.K.; Mukhopadhyay, A.K.; Bhattacharya, M.K. Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg. Infect. Dis. 2013, 19, 464. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Pollett, S.; Ferguson, P.; McMullan, B.J.; Sheppeard, V.; Mahady, S.E. Locally acquired severe non-O1 and non-O139 Vibrio cholerae infection associated with ingestion of imported seafood. Med. J. Aust. 2013, 199, 26–27. [Google Scholar] [CrossRef]
- Hasan, N.A.; Rezayat, T.; Blatz, P.J.; Choi, S.Y.; Griffitt, K.J.; Rashed, S.M.; Huq, A.; Conger, N.G.; Colwell, R.R.; Grimes, D.J. Nontoxigenic Vibrio cholerae non-O1/O139 isolate from a case of human gastroenteritis in the US Gulf Coast. J. Clin. Microbiol. 2015, 53, 9–14. [Google Scholar] [CrossRef]
- Tangestani, M.G.; Alinezhad, J.; Khajeian, A.; Gharibi, S.; Haghighi, M.A. Identification of cholix toxin gene in Vibrio cholerae non-O1/non-O139 isolated from diarrhea patients in Bushehr, Iran. Iran. J. Microbiol. 2020, 12, 273. [Google Scholar]
- Dalsgaard, A.; Forslund, A.; Bodhidatta, L.; Serichantalergs, O.; Pitarangsi, C.; Pang, L.; Shimada, T.; Echeverria, P. A high proportion of Vibrio cholerae strains isolated from children with diarrhoea in Bangkok, Thailand are multiple antibiotic resistant and belong to heterogenous non-O1, non-O139 O-serotypes. Epidemiol. Infect. 1999, 122, 217–226. [Google Scholar] [CrossRef]
- Bagchi, K.; Echeverria, P.; Arthur, J.; Sethabutr, O.; Serichantalergs, O.; Hoge, C. Epidemic of diarrhea caused by Vibrio cholerae non-O1 that produced heat-stable toxin among Khmers in a camp in Thailand. J. Clin. Microbiol. 1993, 31, 1315–1317. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Bag, P.K.; Pal, A.; Bhattacharya, S.; Bhattacharya, M.; Shimada, T.; Takeda, T.; Karasawa, T.; Kurazono, H.; Takeda, Y. Virulence patterns of Vibrio cholerae non-01 strains isolated from hospitalised patients with acute diarrhoea in Calcutta, India. J. Med. Microbiol. 1993, 39, 310–317. [Google Scholar] [CrossRef]
- Rudra, S.; Mahajan, R.; Mathur, M.; Kathuria, K.; Talwar, V. Cluster of cases of clinical cholera due to Vibrio cholerae 010 in east Delhi. Indian J. Med. Res. 1996, 103, 71–73. [Google Scholar]
- Sharma, C.; Thungapathra, M.; Ghosh, A.; Mukhopadhyay, A.K.; Basu, A.; Mitra, R.; Basu, I.; Bhattacharya, S.; Shimada, T.; Ramamurthy, T. Molecular analysis of non-O1, non-O139 Vibrio cholerae associated with an unusual upsurge in the incidence of cholera-like disease in Calcutta, India. J. Clin. Microbiol. 1998, 36, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Dutta, D.; Bhattacharya, S.; Deb, A.; Mukhopadhyay, A.; Nair, G.; Shimada, T.; Takeda, Y.; Chowdhury, A.; Mahalanabis, D. Association of a disease approximating cholera caused by Vibrio cholerae of serogroups other than O1 and O139. Epidemiol. Infect. 1998, 120, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Onifade, T.M.; Hutchinson, R.; Van Zile, K.; Bodager, D.; Baker, R.; Blackmore, C. Toxin producing Vibrio cholerae O75 outbreak, United States, march to April 2011. Eurosurveillance 2011, 16, 19870. [Google Scholar] [CrossRef] [PubMed]
- Tobin-D’Angelo, M.; Smith, A.R.; Bulens, S.N.; Thomas, S.; Hodel, M.; Izumiya, H.; Arakawa, E.; Morita, M.; Watanabe, H.; Marin, C. Severe diarrhea caused by cholera toxin–producing Vibrio cholerae serogroup O75 infections acquired in the southeastern United States. Clin. Infect. Dis. 2008, 47, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ye, J.; Jin, D.; Ding, G.; Zhang, Z.; Mei, L.; Octavia, S.; Lan, R. Molecular analysis of non-O1/non-O139 Vibrio cholerae isolated from hospitalised patients in China. BMC Microbiol. 2013, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Ke, B.; Pang, B.; He, D.; Xu, J.; Chen, Q.; Liang, J.; Chen, J.; Li, Z.; Zhou, H.; Deng, X. Phylogenetic analysis of serogroup O5 Vibrio cholerae that caused successive cholera outbreaks—Guangdong Province, China, 2020–2021. China CDC Wkly. 2022, 4, 238. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, M.; Velasco, J.; Rodriguez, S.; Vidal, M.; Arellano, C.; Silva, F.; Carreño, L.J.; Vidal, R.; Montero, D.A. Genomic characterization of the non-O1/non-O139 Vibrio cholerae strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018. Microb. Genom. 2020, 6, e000340. [Google Scholar] [CrossRef] [PubMed]
- Octavia, S.; Salim, A.; Kurniawan, J.; Lam, C.; Leung, Q.; Ahsan, S.; Reeves, P.R.; Nair, G.B.; Lan, R. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS ONE 2013, 8, e65342. [Google Scholar] [CrossRef]
- Zhang, Q.; Alter, T.; Strauch, E.; Hammerl, J.A.; Schwartz, K.; Borowiak, M.; Deneke, C.; Fleischmann, S. Genetic and Phenotypic Virulence Potential of Non-O1/Non-O139 Vibrio cholerae Isolated from German Retail Seafood. Microorganisms 2023, 11, 2751. [Google Scholar] [CrossRef]
- Zhang, Q.; Alter, T.; Strauch, E.; Eichhorn, I.; Borowiak, M.; Deneke, C.; Fleischmann, S. German coasts harbor non-O1/non-O139 Vibrio cholerae with clinical virulence gene profiles. Infect. Genet. Evol. 2024, 120, 105587. [Google Scholar] [CrossRef]
- Almagro-Moreno, S.; Pruss, K.; Taylor, R.K. Intestinal colonization dynamics of Vibrio cholerae. PLoS Pathog. 2015, 11, e1004787. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.W.; Isaacson, R.E. Proteinaceous bacterial adhesins and their receptors. CRC Crit. Rev. Microbiol. 1982, 10, 229–260. [Google Scholar] [CrossRef] [PubMed]
- Lo Scrudato, M.; Blokesch, M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 2012, 8, e1002778. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, T.; Nandy, R.K.; Mukhopadhyay, A.K.; Dutta, S.; Mutreja, A.; Okamoto, K.; Miyoshi, S.-I.; Nair, G.B.; Ghosh, A. Virulence regulation and innate host response in the pathogenicity of Vibrio cholerae. Front. Cell. Infect. Microbiol. 2020, 10, 572096. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.A.; Vidal, R.M.; Velasco, J.; George, S.; Lucero, Y.; Gómez, L.A.; Carreño, L.J.; García-Betancourt, R.; O’Ryan, M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front. Med. 2023, 10, 1155751. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2022, 31, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.J.; Benitez, J.A. Vibrio cholerae biofilms and cholera pathogenesis. PLoS Neglected Trop. Dis. 2016, 10, e0004330. [Google Scholar] [CrossRef]
- Teschler, J.K.; Zamorano-Sánchez, D.; Utada, A.S.; Warner, C.J.; Wong, G.C.; Linington, R.G.; Yildiz, F.H. Living in the matrix: Assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 2015, 13, 255–268. [Google Scholar] [CrossRef]
- Merrell, D.S.; Hava, D.L.; Camilli, A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol. Microbiol. 2002, 43, 1471–1491. [Google Scholar] [CrossRef]
- Zhou, Y.; Lee, Z.L.; Zhu, J. On or Off: Life-Changing Decisions Made by Vibrio cholerae under Stress. Infect. Microbes Dis. 2020, 2, 127. [Google Scholar] [CrossRef]
- Merrell, D.S.; Camilli, A. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 1999, 34, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.M.; Hay, A.J.; Liu, Z.; Desland, F.A.; Zhang, J.; Zhong, Z.; Zhu, J. The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. MBio 2012, 3, e00013-12. [Google Scholar] [CrossRef] [PubMed]
- Frey, R.S.; Ushio–Fukai, M.; Malik, A.B. NADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology. Antioxid. Redox Signal. 2009, 11, 791–810. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, D.; Klose, K.E. Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc. Natl. Acad. Sci. USA 2000, 97, 10220–10224. [Google Scholar] [CrossRef] [PubMed]
- Bina, X.R.; Provenzano, D.; Nguyen, N.; Bina, J.E. Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect. Immun. 2008, 76, 3595–3605. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Caro, F.; Robins, W.; Mekalanos, J.J. Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 2018, 359, 210–213. [Google Scholar] [CrossRef]
- Kovacikova, G.; Lin, W.; Skorupski, K. The LysR-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J. Bacteriol. 2010, 192, 4181–4191. [Google Scholar] [CrossRef] [PubMed]
- Cakar, F.; Zingl, F.G.; Moisi, M.; Reidl, J.; Schild, S. In vivo repressed genes of Vibrio cholerae reveal inverse requirements of an H+/Cl− transporter along the gastrointestinal passage. Proc. Natl. Acad. Sci. USA 2018, 115, E2376–E2385. [Google Scholar] [CrossRef]
- Fernandez, N.L.; Waters, C.M. Cyclic di-GMP increases catalase production and hydrogen peroxide tolerance in Vibrio cholerae. Appl. Environ. Microbiol. 2019, 85, e01043-19. [Google Scholar] [CrossRef]
- Wang, H.; Ayala, J.C.; Silva, A.J.; Benitez, J.A. The histone-like nucleoid structuring protein (H-NS) is a repressor of Vibrio cholerae exopolysaccharide biosynthesis (vps) genes. Appl. Environ. Microbiol. 2012, 78, 2482–2488. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Zhou, Z.; Sheng, Y.; Naseer, N.; Kan, B.; Zhu, J. Thiol-based switch mechanism of virulence regulator AphB modulates oxidative stress response in Vibrio cholerae. Mol. Microbiol. 2016, 102, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.-K.; Hong, S.-K.; Lee, D.-S.; Kim, I.-H. Vibrio cholerae thiol peroxidase-glutaredoxin fusion is a 2-Cys TSA/AhpC subfamily acting as a lipid hydroperoxide reductase. J. Biol. Chem. 2004, 279, 11035–11041. [Google Scholar] [CrossRef]
- Bina, X.R.; Howard, M.F.; Taylor-Mulneix, D.L.; Ante, V.M.; Kunkle, D.E.; Bina, J.E. The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog. 2018, 14, e1006804. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Kakarla, P.; Kumar, S.; Gonzalez, E.; Floyd, J.T.; Inupakutika, M.; Devireddy, A.R.; Tirrell, S.R.; Bruns, M.; He, G. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae. Genom. Discov. 2014, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Kunkle, D.E.; Bina, X.R.; Bina, J.E. The Vibrio cholerae VexGH RND efflux system maintains cellular homeostasis by effluxing vibriobactin. MBio 2017, 8, e00126-17. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Matte, M.H.; Matté, G.R.; Jiang, S.; Sabeena, F.; Shukla, B.; Sanyal, S.; Huq, A.; Colwell, R. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: Clonal relationships between clinical and environmental isolates. Appl. Environ. Microbiol. 2001, 67, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Bi, R.; Deng, L.; Kang, H.; Gu, B.; Ma, P. Virulence-associated genes and molecular characteristics of non-O1/non-O139 Vibrio cholerae isolated from hepatitis B cirrhosis patients in China. Int. J. Infect. Dis. 2018, 74, 117–122. [Google Scholar] [CrossRef]
- Pennetzdorfer, N.; Höfler, T.; Wölflingseder, M.; Tutz, S.; Schild, S.; Reidl, J. σE controlled regulation of porin OmpU in Vibrio cholerae. Mol. Microbiol. 2021, 115, 1244–1261. [Google Scholar] [CrossRef] [PubMed]
- Giglio, K.M.; Fong, J.C.; Yildiz, F.H.; Sondermann, H. Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J. Bacteriol. 2013, 195, 3277–3286. [Google Scholar] [CrossRef]
- Fong, J.C.; Yildiz, F.H. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J. Bacteriol. 2007, 189, 2319–2330. [Google Scholar] [CrossRef]
- Zamorano-Sánchez, D.; Fong, J.C.; Kilic, S.; Erill, I.; Yildiz, F.H. Identification and characterization of VpsR and VpsT binding sites in Vibrio cholerae. J. Bacteriol. 2015, 197, 1221–1235. [Google Scholar] [CrossRef] [PubMed]
- Beyhan, S.; Bilecen, K.; Salama, S.R.; Casper-Lindley, C.; Yildiz, F.H. Regulation of rugosity and biofilm formation in Vibrio cholerae: Comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J. Bacteriol. 2007, 189, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Krasteva, P.V.; Fong, J.C.; Shikuma, N.J.; Beyhan, S.; Navarro, M.V.; Yildiz, F.H.; Sondermann, H. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 2010, 327, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Koestler, B.J.; Waters, C.M. Bile acids and bicarbonate inversely regulate intracellular cyclic di-GMP in Vibrio cholerae. Infect. Immun. 2014, 82, 3002–3014. [Google Scholar] [CrossRef] [PubMed]
- Dua, P.; Karmakar, A.; Ghosh, C. Virulence gene profiles, biofilm formation, and antimicrobial resistance of Vibrio cholerae non-O1/non-O139 bacteria isolated from West Bengal, India. Heliyon 2018, 4, e01040. [Google Scholar] [CrossRef] [PubMed]
- Logan, S.L.; Thomas, J.; Yan, J.; Baker, R.P.; Shields, D.S.; Xavier, J.B.; Hammer, B.K.; Parthasarathy, R. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc. Natl. Acad. Sci. USA 2018, 115, E3779–E3787. [Google Scholar] [CrossRef] [PubMed]
- Jaskolska, M.; Stutzmann, S.; Stoudmann, C.; Blokesch, M. QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae. Nucleic Acids Res. 2018, 46, 10619–10634. [Google Scholar] [CrossRef] [PubMed]
- Borgeaud, S.; Metzger, L.C.; Scrignari, T.; Blokesch, M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 2015, 347, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Crisan, C.V.; Hammer, B.K. The Vibrio cholerae type VI secretion system: Toxins, regulators and consequences. Environ. Microbiol. 2020, 22, 4112–4122. [Google Scholar] [CrossRef]
- Krukonis, E.S.; DiRita, V.J. From motility to virulence: Sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol. 2003, 6, 186–190. [Google Scholar] [CrossRef]
- Butler, S.M.; Camilli, A. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2004, 101, 5018–5023. [Google Scholar] [CrossRef]
- Millet, Y.A.; Alvarez, D.; Ringgaard, S.; von Andrian, U.H.; Davis, B.M.; Waldor, M.K. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog. 2014, 10, e1004405. [Google Scholar] [CrossRef]
- Jermyn, W.S.; Boyd, E.F. Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): Mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates. Microbiology 2005, 151, 311–322. [Google Scholar] [CrossRef]
- Finkelstein, R.A.; Boesman-Finkelstein, M.; Chang, Y.; Häse, C. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect. Immun. 1992, 60, 472–478. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, S.; Li, J.; Ji, P.; Zhang, Y.; Wu, C.; Jiang, Q.; Gao, X.; Zhang, X. Complete genome analysis of highly pathogenic non-O1/O139 Vibrio cholerae isolated from Macrobrachium rosenbergii reveals pathogenicity and antibiotic resistance-related genes. Front. Vet. Sci. 2022, 9, 882885. [Google Scholar] [CrossRef]
- Ottemann, K.M.; Miller, J.F. Roles for motility in bacterial–host interactions. Mol. Microbiol. 1997, 24, 1109–1117. [Google Scholar] [CrossRef]
- Nhu, N.T.; Lee, J.S.; Wang, H.J.; Dufour, Y.S. Alkaline pH increases swimming speed and facilitates mucus penetration for Vibrio cholerae. J. Bacteriol. 2021, 203, e00607-20. [Google Scholar] [CrossRef]
- Syed, K.A.; Beyhan, S.; Correa, N.; Queen, J.; Liu, J.; Peng, F.; Satchell, K.J.; Yildiz, F.; Klose, K.E. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J. Bacteriol. 2009, 191, 6555–6570. [Google Scholar] [CrossRef]
- Butz, H.A.; Mey, A.R.; Ciosek, A.L.; Crofts, A.A.; Davies, B.W.; Payne, S.M. Regulatory effects of CsrA in Vibrio cholerae. MBio 2021, 12, e03380-20. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, J.; Guo, X.; Wang, X.; Liu, F.; Cao, B. The global regulators ArcA and CytR collaboratively modulate Vibrio cholerae motility. BMC Microbiol. 2022, 22, 22. [Google Scholar] [CrossRef] [PubMed]
- Boin, M.A.; Austin, M.J.; Häse, C.C. Chemotaxis in Vibrio cholerae. FEMS Microbiol. Lett. 2004, 239, 1–8. [Google Scholar] [CrossRef]
- Yang, W.; Alvarado, A.; Glatter, T.; Ringgaard, S.; Briegel, A. Baseplate variability of Vibrio cholerae chemoreceptor arrays. Proc. Natl. Acad. Sci. USA 2018, 115, 13365–13370. [Google Scholar] [CrossRef]
- Hiremath, G.; Hyakutake, A.; Yamamoto, K.; Ebisawa, T.; Nakamura, T.; Nishiyama, S.i.; Homma, M.; Kawagishi, I. Hypoxia-induced localization of chemotaxis-related signaling proteins in V ibrio cholerae. Mol. Microbiol. 2015, 95, 780–790. [Google Scholar] [CrossRef]
- Ringgaard, S.; Hubbard, T.; Mandlik, A.; Davis, B.M.; Waldor, M.K. RpoS and quorum sensing control expression and polar localization of V ibrio cholerae chemotaxis cluster III proteins in vitro and in vivo. Mol. Microbiol. 2015, 97, 660–675. [Google Scholar] [CrossRef]
- Haley, B.J.; Choi, S.Y.; Grim, C.J.; Onifade, T.J.; Cinar, H.N.; Tall, B.D.; Taviani, E.; Hasan, N.A.; Abdullah, A.H.; Carter, L. Genomic and phenotypic characterization of Vibrio cholerae non-O1 isolates from a US Gulf Coast cholera outbreak. PLoS ONE 2014, 9, e86264. [Google Scholar] [CrossRef]
- Takahashi, E.; Ochi, S.; Morita, D.; Morita, M.; Ohnishi, M.; Koley, H.; Dutta, M.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S. Virulence of cholera toxin gene-positive Vibrio cholerae non-O1/non-O139 strains isolated from environmental water in Kolkata, India. Front. Microbiol. 2021, 12, 726273. [Google Scholar] [CrossRef]
- Galen, J.E.; Ketley, J.; Fasano, A.; Richardson, S.; Wasserman, S.; Kaper, J. Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect. Immun. 1992, 60, 406–415. [Google Scholar] [CrossRef]
- Murphy, S.G.; Alvarez, L.; Adams, M.C.; Liu, S.; Chappie, J.S.; Cava, F.; Dörr, T. Endopeptidase regulation as a novel function of the Zur-dependent zinc starvation response. MBio 2019, 10, e02620-18. [Google Scholar] [CrossRef]
- Murphy, S.G.; Murtha, A.N.; Zhao, Z.; Alvarez, L.; Diebold, P.; Shin, J.-H.; VanNieuwenhze, M.S.; Cava, F.; Dörr, T. Class A penicillin-binding protein-mediated cell wall synthesis promotes structural integrity during peptidoglycan endopeptidase insufficiency in Vibrio cholerae. MBio 2021, 12, e03596-20. [Google Scholar] [CrossRef]
- Silva, A.J.; Pham, K.; Benitez, J.A. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology 2003, 149, 1883–1891. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Chen, A.; Hasan, N.A.; Rashed, S.M.; Huq, A.; Colwell, R.R. Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland. Appl. Environ. Microbiol. 2015, 81, 1909–1918. [Google Scholar] [CrossRef]
- Utada, A.S.; Bennett, R.R.; Fong, J.C.; Gibiansky, M.L.; Yildiz, F.H.; Golestanian, R.; Wong, G.C. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun. 2014, 5, 4913. [Google Scholar] [CrossRef]
- Dziejman, M.; Serruto, D.; Tam, V.C.; Sturtevant, D.; Diraphat, P.; Faruque, S.M.; Rahman, M.H.; Heidelberg, J.F.; Decker, J.; Li, L. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc. Natl. Acad. Sci. USA 2005, 102, 3465–3470. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, M.; Feng, C.; Liu, H.; Zhang, H.; Bennett, R.R.; Utada, A.S.; Liu, Z.; Zhao, K. Crash landing of Vibrio cholerae by MSHA pili-assisted braking and anchoring in a viscoelastic environment. Elife 2021, 10, e60655. [Google Scholar] [CrossRef]
- Krachler, A.M.; Ham, H.; Orth, K. Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by gram-negative pathogens. Proc. Natl. Acad. Sci. USA 2011, 108, 11614–11619. [Google Scholar] [CrossRef]
- Wong, E.; Vaaje-Kolstad, G.; Ghosh, A.; Hurtado-Guerrero, R.; Konarev, P.V.; Ibrahim, A.F.; Svergun, D.I.; Eijsink, V.G.; Chatterjee, N.S.; van Aalten, D.M. The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog. 2012, 8, e1002373. [Google Scholar] [CrossRef]
- Sperandio, V.; Giron, J.A.; Silveira, W.D.; Kaper, J.B. The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect. Immun. 1995, 63, 4433–4438. [Google Scholar] [CrossRef]
- Potapova, A.; Garvey, W.; Dahl, P.; Guo, S.; Chang, Y.; Schwechheimer, C.; Trebino, M.A.; Floyd, K.A.; Phinney, B.S.; Liu, J. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly. Mbio 2024, 15, e03304-23. [Google Scholar] [CrossRef]
- Miller, K.A.; Tomberlin, K.F.; Dziejman, M. Vibrio variations on a type three theme. Curr. Opin. Microbiol. 2019, 47, 66–73. [Google Scholar] [CrossRef]
- Zhou, X.; Massol, R.H.; Nakamura, F.; Chen, X.; Gewurz, B.E.; Davis, B.M.; Lencer, W.I.; Waldor, M.K. Remodeling of the intestinal brush border underlies adhesion and virulence of an enteric pathogen. MBio 2014, 5, e01639-14. [Google Scholar] [CrossRef]
- Alam, A.; Miller, K.A.; Chaand, M.; Butler, J.S.; Dziejman, M. Identification of Vibrio cholerae type III secretion system effector proteins. Infect. Immun. 2011, 79, 1728–1740. [Google Scholar] [CrossRef]
- Chaand, M.; Miller, K.A.; Sofia, M.K.; Schlesener, C.; Weaver, J.W.; Sood, V.; Dziejman, M. Type three secretion system island-encoded proteins required for colonization by non-O1/non-O139 serogroup Vibrio cholerae. Infect. Immun. 2015, 83, 2862–2869. [Google Scholar] [CrossRef]
- Krasilnikov, O.V.; Muratkhodjaev, J.N.; Zitzer, A.O. The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochim. Et Biophys. Acta (BBA)-Biomembr. 1992, 1111, 7–16. [Google Scholar] [CrossRef]
- Queen, J.; Satchell, K.J.F. Neutrophils are essential for containment of Vibrio cholerae to the intestine during the proinflammatory phase of infection. Infect. Immun. 2012, 80, 2905–2913. [Google Scholar] [CrossRef]
- Arita, M.; Takeda, T.; Honda, T.; Miwatani, T. Purification and characterization of Vibrio cholerae non-O1 heat-stable enterotoxin. Infect. Immun. 1986, 52, 45–49. [Google Scholar] [CrossRef]
- Jørgensen, R.; Purdy, A.E.; Fieldhouse, R.J.; Kimber, M.S.; Bartlett, D.H.; Merrill, A.R. Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J. Biol. Chem. 2008, 283, 10671–10678. [Google Scholar] [CrossRef]
- Saka, H.A.; Bidinost, C.; Sola, C.; Carranza, P.; Collino, C.; Ortiz, S.; Echenique, J.R.; Bocco, J.L. Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain. Microb. Pathog. 2008, 44, 118–128. [Google Scholar] [CrossRef]
- Olson, R.; Gouaux, E. Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. J. Mol. Biol. 2005, 350, 997–1016. [Google Scholar] [CrossRef]
- Gao, H.; Xu, J.; Lu, X.; Li, J.; Lou, J.; Zhao, H.; Diao, B.; Shi, Q.; Zhang, Y.; Kan, B. Expression of hemolysin is regulated under the collective actions of HapR, Fur, and HlyU in Vibrio cholerae El Tor serogroup O1. Front. Microbiol. 2018, 9, 1310. [Google Scholar] [CrossRef] [PubMed]
- Satchell, K.J.F. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect. Immun. 2007, 75, 5079–5084. [Google Scholar] [CrossRef] [PubMed]
- Olivier, V.; Queen, J.; Satchell, K.J. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS ONE 2009, 4, e7352. [Google Scholar] [CrossRef]
- Satchell, K.J. Multifunctional-autoprocessing repeats-in-toxin (MARTX) Toxins of Vibrios. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Dolores, J.; Satchell, K.J. Analysis of Vibrio cholerae genome sequences reveals unique rtxA variants in environmental strains and an rtxA-null mutation in recent altered El Tor isolates. MBio 2013, 4, e00624. [Google Scholar] [CrossRef]
- Spangler, B.D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 1992, 56, 622–647. [Google Scholar] [CrossRef]
- Peterson, J.W.; Whipp, S.C. Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect. Immun. 1995, 63, 1452–1461. [Google Scholar] [CrossRef]
- Awasthi, S.P.; Asakura, M.; Chowdhury, N.; Neogi, S.B.; Hinenoya, A.; Golbar, H.M.; Yamate, J.; Arakawa, E.; Tada, T.; Ramamurthy, T. Novel cholix toxin variants, ADP-ribosylating toxins in Vibrio cholerae non-O1/non-O139 strains, and their pathogenicity. Infect. Immun. 2013, 81, 531–541. [Google Scholar] [CrossRef]
- Tam, V.C.; Serruto, D.; Dziejman, M.; Brieher, W.; Mekalanos, J.J. A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe 2007, 1, 95–107. [Google Scholar] [CrossRef]
- Tam, V.C.; Suzuki, M.; Coughlin, M.; Saslowsky, D.; Biswas, K.; Lencer, W.I.; Faruque, S.M.; Mekalanos, J.J. Functional analysis of VopF activity required for colonization in Vibrio cholerae. MBio 2010, 1, e00289-10. [Google Scholar] [CrossRef]
- Miller, K.A.; Chaand, M.; Gregoire, S.; Yoshida, T.; Beck, L.A.; Ivanov, A.I.; Dziejman, M. Characterization of V. cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells. Cell Microbiol. 2016, 18, 1857–1870. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Danilchanka, O.; Mekalanos, J.J. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe 2014, 16, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Shin, O.S.; Tam, V.C.; Suzuki, M.; Ritchie, J.M.; Bronson, R.T.; Waldor, M.K.; Mekalanos, J.J. Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. MBio 2011, 2, e00106-11. [Google Scholar] [CrossRef]
- Chaand, M.; Dziejman, M. Vibrio cholerae VttRA and VttRB regulatory influences extend beyond the type 3 secretion system genomic island. J. Bacteriol. 2013, 195, 2424–2436. [Google Scholar] [CrossRef]
- Kashimura, M. The human spleen as the center of the blood defense system. Int. J. Hematol. 2020, 112, 147–158. [Google Scholar] [CrossRef]
- Kwiecinski, J.M.; Horswill, A.R. Staphylococcus aureus bloodstream infections: Pathogenesis and regulatory mechanisms. Curr. Opin. Microbiol. 2020, 53, 51–60. [Google Scholar] [CrossRef]
- Vidakovic, L.; Mikhaleva, S.; Jeckel, H.; Nisnevich, V.; Strenger, K.; Neuhaus, K.; Raveendran, K.; Ben-Moshe, N.B.; Aznaourova, M.; Nosho, K. Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae. Cell 2023, 186, 2690–2704.e1–e10. [Google Scholar] [CrossRef]
- Nielsen, A.T.; Dolganov, N.A.; Otto, G.; Miller, M.C.; Wu, C.Y.; Schoolnik, G.K. RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog. 2006, 2, e109. [Google Scholar] [CrossRef]
- Jude, B.A.; Martinez, R.M.; Skorupski, K.; Taylor, R.K. Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis. J. Bacteriol. 2009, 191, 6911–6917. [Google Scholar] [CrossRef]
- Bridges, A.A.; Fei, C.; Bassler, B.L. Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling Vibrio cholerae biofilm dispersal. Proc. Natl. Acad. Sci. USA 2020, 117, 32639–32647. [Google Scholar] [CrossRef]
- Perez, L.J.; Ng, W.-L.; Marano, P.; Brook, K.; Bassler, B.L.; Semmelhack, M.F. Role of the CAI-1 fatty acid tail in the Vibrio cholerae quorum sensing response. J. Med. Chem. 2012, 55, 9669–9681. [Google Scholar] [CrossRef]
- Papenfort, K.; Silpe, J.E.; Schramma, K.R.; Cong, J.-P.; Seyedsayamdost, M.R.; Bassler, B.L. A Vibrio cholerae autoinducer–receptor pair that controls biofilm formation. Nat. Chem. Biol. 2017, 13, 551–557. [Google Scholar] [CrossRef]
- Winzer, K.; Hardie, K.; Williams, P. LuxS and autoinducer-2: Their contribution to quorum. Adv. Appl. Microbiol. 2003, 53, 291. [Google Scholar]
- Higgins, D.A.; Pomianek, M.E.; Kraml, C.M.; Taylor, R.K.; Semmelhack, M.F.; Bassler, B.L. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 2007, 450, 883–886. [Google Scholar] [CrossRef]
- Huang, X.; Duddy, O.P.; Silpe, J.E.; Paczkowski, J.E.; Cong, J.; Henke, B.R.; Bassler, B.L. Mechanism underlying autoinducer recognition in the Vibrio cholerae DPO-VqmA quorum-sensing pathway. J. Biol. Chem. 2020, 295, 2916–2931. [Google Scholar] [CrossRef]
- Papenfort, K.; Förstner, K.U.; Cong, J.-P.; Sharma, C.M.; Bassler, B.L. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc. Natl. Acad. Sci. USA 2015, 112, E766–E775. [Google Scholar] [CrossRef]
- Defoirdt, T. Amino acid–derived quorum sensing molecules controlling the virulence of vibrios (and beyond). PLoS Pathog. 2019, 15, e1007815. [Google Scholar] [CrossRef]
- Butz, H.A.; Mey, A.R.; Ciosek, A.L.; Payne, S.M. Vibrio cholerae CsrA directly regulates varA to increase expression of the three nonredundant Csr small RNAs. MBio 2019, 10, e01042-19. [Google Scholar] [CrossRef]
- Jang, J.; Jung, K.-T.; Yoo, C.-K.; Rhie, G.-e. Regulation of hemagglutinin/protease expression by the VarS/VarA–CsrA/B/C/D system in Vibrio cholerae. Microb. Pathog. 2010, 48, 245–250. [Google Scholar] [CrossRef]
- Herrera, C.M.; Crofts, A.A.; Henderson, J.C.; Pingali, S.C.; Davies, B.W.; Trent, M.S. The Vibrio cholerae VprA-VprB two-component system controls virulence through endotoxin modification. MBio 2014, 5, e02283-14. [Google Scholar] [CrossRef]
- Teschler, J.K.; Cheng, A.T.; Yildiz, F.H. The two-component signal transduction system VxrAB positively regulates Vibrio cholerae biofilm formation. J. Bacteriol. 2017, 199, e00139-17. [Google Scholar] [CrossRef]
- Cheng, A.T.; Ottemann, K.M.; Yildiz, F.H. Vibrio cholerae response regulator VxrB controls colonization and regulates the type VI secretion system. PLoS Pathog. 2015, 11, e1004933. [Google Scholar] [CrossRef]
- Pratt, J.T.; McDonough, E.; Camilli, A. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J. Bacteriol. 2009, 191, 6632–6642. [Google Scholar] [CrossRef]
- Barrasso, K.; Watve, S.; Simpson, C.A.; Geyman, L.J.; van Kessel, J.C.; Ng, W.-L. Dual-function quorum-sensing systems in bacterial pathogens and symbionts. PLoS Pathog. 2020, 16, e1008934. [Google Scholar] [CrossRef]
- Halang, P.; Toulouse, C.; Geißel, B.; Michel, B.; Flauger, B.; Müller, M.; Voegele, R.T.; Stefanski, V.; Steuber, J. Response of Vibrio cholerae to the catecholamine hormones epinephrine and norepinephrine. J. Bacteriol. 2015, 197, 3769–3778. [Google Scholar] [CrossRef]
- Sengupta, N.; Paul, K.; Chowdhury, R. The global regulator ArcA modulates expression of virulence factors in Vibrio cholerae. Infect. Immun. 2003, 71, 5583–5589. [Google Scholar] [CrossRef]
- Chourashi, R.; Das, S.; Dhar, D.; Okamoto, K.; Mukhopadhyay, A.K.; Chatterjee, N.S. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation. Microbiology 2018, 164, 751–763. [Google Scholar] [CrossRef]
- Klancher, C.A.; Yamamoto, S.; Dalia, T.N.; Dalia, A.B. ChiS is a noncanonical DNA-binding hybrid sensor kinase that directly regulates the chitin utilization program in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2020, 117, 20180–20189. [Google Scholar] [CrossRef]
- García, J.; Madrid, C.; Cendra, M.; Juárez, A.; Pons, M. N9L and L9N mutations toggle Hha binding and hemolysin regulation by Escherichia coli and Vibrio cholerae H-NS. FEBS Lett. 2009, 583, 2911–2916. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Zhang, J.; Rothenbacher, F.P.; Jiang, T.; Kan, B.; Zhong, Z.; Zhu, J. Catalases promote resistance of oxidative stress in Vibrio cholerae. PLoS ONE 2012, 7, e53383. [Google Scholar] [CrossRef]
- Kitaoka, M.; Miyata, S.T.; Brooks, T.M.; Unterweger, D.; Pukatzki, S. VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J. Bacteriol. 2011, 193, 6471–6482. [Google Scholar] [CrossRef]
- Silva, A.J.; Sultan, S.Z.; Liang, W.; Benitez, J.A. Role of the histone-like nucleoid structuring protein in the regulation of rpoS and RpoS-dependent genes in Vibrio cholerae. J. Bacteriol. 2008, 190, 7335–7345. [Google Scholar] [CrossRef]
- Manneh-Roussel, J.; Haycocks, J.R.; Magán, A.; Perez-Soto, N.; Voelz, K.; Camilli, A.; Krachler, A.-M.; Grainger, D.C. cAMP receptor protein controls Vibrio cholerae gene expression in response to host colonization. MBio 2018, 9, e00966-18. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, D.; Zhu, J.; Liu, J.; Liu, W. The regulation of bacterial biofilm formation by cAMP-CRP: A mini-review. Front. Microbiol. 2020, 11, 802. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Alter, T.; Fleischmann, S. Non-O1/Non-O139 Vibrio cholerae—An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024, 12, 818. https://doi.org/10.3390/microorganisms12040818
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae—An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms. 2024; 12(4):818. https://doi.org/10.3390/microorganisms12040818
Chicago/Turabian StyleZhang, Quantao, Thomas Alter, and Susanne Fleischmann. 2024. "Non-O1/Non-O139 Vibrio cholerae—An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis" Microorganisms 12, no. 4: 818. https://doi.org/10.3390/microorganisms12040818