Vine-Winery Byproducts as Precious Resource of Natural Antimicrobials: In Vitro Antibacterial and Antibiofilm Activity of Grape Pomace Extracts against Foodborne Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Ultrasound-Assisted Extraction
2.3. Determination of Polyphenols
2.4. Foodborne Bacteria and Growth Conditions
2.5. Antibacterial Assays
2.5.1. Agar Well Diffusion Method
2.5.2. Tube Dilution Method
2.6. In Vitro Synergy Analysis with Standard Antibiotics
2.7. Antibiofilm Assays
2.7.1. Tissue Culture Plate Method
2.7.2. Biofilm Formation Inhibition Assay
2.8. Statistical Data Analysis
3. Results
3.1. Extraction Yield from Aglianico Grape Pomace and Major Polyphenolic Constituents
3.2. In Vitro Antibacterial Activity of Hydroethanolic Grape Pomace Extract against Gram-Positive and Gram-Negative Foodborne Bacteria
3.3. Synergistic Inhibitory Effect of Binary Combination of Hydroethanolic Grape Pomace Extract and Standard Antibiotics against Gram-Positive and Gram-Negative Foodborne Bacteria
3.4. In Vitro Antibiofilm Activity of Hydroethanolic Grape Pomace Extract against Staphylococcus aureus and Bacillus cereus Foodborne Bacteria
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations—Statistics Division (FAOSTAT). Available online: http://www.fao.org/faostat/ (accessed on 23 March 2021).
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of Polyphenol-Rich Grape by-Products in Monogastric Nutrition. A Review. Anim. Feed. Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel Application and Industrial Exploitation of Winery by-Products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Nogales, R.; Cifuentes, C.; Benítez, E. Vermicomposting of Winery Wastes: A Laboratory Study. J. Environ. Sci. Health B 2005, 40, 659–673. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Igrejas, G.; Gaivão, I.; Aires, A.; Klibi, N.; Dapkevicius, M.d.L.E.; Valentão, P.; Falco, V.; Poeta, P. Valorization of Winemaking by-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021, 26, 2331. [Google Scholar] [CrossRef]
- Todd, E. Food-Borne Disease Prevention and Risk Assessment. Int. J. Environ. Res. Public Health 2020, 17, 5129. [Google Scholar] [CrossRef]
- Cordery, A.; Rao, A.P.; Ravishankar, S. Antimicrobial Activities of Essential Oils, Plant Extracts and Their Applications in Foods—A Review. J. Agric. Environ. Sci. 2018, 7, 76–89. [Google Scholar] [CrossRef]
- Brito, P.S.D.; Oliveira, A.S.; Rodrigues, L.F. Energy Valorization of Solid Vines Pruning by Thermal Gasification in a Pilot Plant. Waste Biomass Valorization 2014, 5, 181–187. [Google Scholar] [CrossRef]
- Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic Compounds: Natural Alternative in Inflammation Treatment. A Review. Cogent Food Agric. 2016, 2, 1131412. [Google Scholar]
- Roleira, F.M.F.; Tavares-Da-Silva, E.J.; Varela, C.L.; Costa, S.C.; Silva, T.; Garrido, J.; Borges, F. Plant Derived and Dietary Phenolic Antioxidants: Anticancer Properties. Food Chem. 2015, 183, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Rempe, C.S.; Burris, K.P.; Lenaghan, S.C.; Stewart, C.N. The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics. Front. Microbiol. 2017, 8, 422. [Google Scholar] [CrossRef] [PubMed]
- Manso, T.; Lores, M.; de Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2021, 11, 46. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Afshari, M.; Rahimmalek, M.; Miroliaei, M. Variation in Polyphenolic Profiles, Antioxidant and Antimicrobial Activity of Different Achillea Species as Natural Sources of Antiglycative Compounds. Chem. Biodivers. 2018, 15, e1800075. [Google Scholar] [CrossRef]
- Pagliarulo, C.; Sateriale, D.; Scioscia, E.; De Tommasi, N.; Colicchio, R.; Pagliuca, C.; Scaglione, E.; Jussila, J.; Makkonen, J.; Salvatore, P.; et al. Growth, Survival and Spore Formation of the Pathogenic Aquatic Oomycete Aphanomyces Astaci and Fungus Fusarium Avenaceum Are Inhibited by Zanthoxylum Rhoifolium Bark Extracts In Vitro. Fishes 2018, 3, 12. [Google Scholar] [CrossRef]
- Sateriale, D.; Scioscia, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; Varricchio, E.; Volpe, M.G.; Paolucci, M.; Pagliarulo, C. Italian Acacia Honey Exhibits Lytic Effects against the Crayfish Pathogens Aphanomyces Astaci and Fusarium Avenaceum. Lett. Appl. Microbiol. 2019, 68, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, D.; Facchiano, S.; Kaldre, K.; Forgione, G.; De Cristofaro, G.A.; Pagliarulo, C.; Paolucci, M. Benefits of Polyphenol-Based Synbiotics in Crustacean Diet. Fishes 2023, 8, 255. [Google Scholar] [CrossRef]
- Baydar, N.G.; Özkan, G.; Saǧdiç, O. Total Phenolic Contents and Antibacterial Activities of Grape (Vitis vinifera L.) Extracts. Food Control 2004, 15, 335–339. [Google Scholar] [CrossRef]
- Sanhueza, L.; Tello, M.; Vivanco, M.; Mendoza, L.; Wilkens, M. Relation between Antibacterial Activity against Food Transmitted Pathogens and Total Phenolic Compounds in Grape Pomace Extracts from Cabernet Sauvignon and Syrah Varieties. Adv. Microbiol. 2014, 04, 225–232. [Google Scholar] [CrossRef]
- Oliveira, M.; Duarte, E. Integrated Approach to Winery Waste: Waste Generation and Data Consolidation. Front. Environ. Sci. Eng. 2016, 10, 168–176. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of Winery Waste vs. the Costs of Not Recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green Processing and Biotechnological Potential of Grape Pomace: Current Trends and Opportunities for Sustainable Biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef]
- Stefanović, O.D. Synergistic Activity of Antibiotics and Bioactive Plant Extracts: A Study Against Gram-Positive and Gram-Negative Bacteria. In Bacterial Pathogenesis and Antibacterial Control; InTech: Vienna, Austria, 2018; Available online: https://www.intechopen.com/chapters/58045 (accessed on 10 September 2023).
- Cheng, V.J.; Bekhit, A.E.D.A.; McConnell, M.; Mros, S.; Zhao, J. Effect of Extraction Solvent, Waste Fraction and Grape Variety on the Antimicrobial and Antioxidant Activities of Extracts from Wine Residue from Cool Climate. Food Chem. 2012, 134, 474–482. [Google Scholar] [CrossRef]
- Aiyegoro, O.A.; Okoh, A.I. Use of Bioactive Plant Products in Combination with Standard Antibiotics: Implications in Antimicrobial Chemotherapy. J. Med. Plants Res. 2009, 3, 1147–1152. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Sateriale, D.; Forgione, G.; De Cristofaro, G.A.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Antibacterial and Antibiofilm Efficacy of Thyme (Thymus vulgaris L.) Essential Oil against Foodborne Illness Pathogens, Salmonella Enterica Subsp. Enterica Serovar Typhimurium and Bacillus Cereus. Antibiotics 2023, 12, 485. [Google Scholar] [CrossRef]
- Perez, C.; Pauli, M.; Bazerque, P. An Antibiotic Assay by the Agar Well Diffusion Method. Acta Biol. Med. Exp. 1990, 15, 113–115. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; ISBN 978-1-68440-134-5. [Google Scholar]
- Sateriale, D.; Facchiano, S.; Colicchio, R.; Pagliuca, C.; Varricchio, E.; Paolucci, M.; Volpe, M.G.; Salvatore, P.; Pagliarulo, C. In Vitro Synergy of Polyphenolic Extracts from Honey, Myrtle and Pomegranate Against Oral Pathogens, S. Mutans and R. Dentocariosa. Front. Microbiol. 2020, 11, 1465. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Synergy, Antagonism, and What the Chequerboard Puts between Them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, D.; Imperatore, R.; Colicchio, R.; Pagliuca, C.; Varricchio, E.; Volpe, M.G.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Phytocompounds vs. Dental Plaque Bacteria: In Vitro Effects of Myrtle and Pomegranate Polyphenolic Extracts Against Single-Species and Multispecies Oral Biofilms. Front. Microbiol. 2020, 11, 592265. [Google Scholar] [CrossRef]
- Bakkiyaraj, D.; Nandhini, J.R.; Malathy, B.; Pandian, S.K. The Anti-Biofilm Potential of Pomegranate (Punica granatum L.) Extract against Human Bacterial and Fungal Pathogens. Biofouling 2013, 29, 929–937. [Google Scholar] [CrossRef]
- Knorr, D.; Ade-Omowaye, B.I.O.; Heinz, V. Nutritional Improvement of Plant Foods by Non-Thermal Processing. Proc. Nutr. Soc. 2002, 61, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.S.; Wang, L.J.; Li, D.; Jiao, S.S.; Chen, X.D.; Mao, Z.H. Ultrasound-Assisted Extraction of Oil from Flaxseed. Sep. Purif. Technol. 2008, 62, 192–198. [Google Scholar] [CrossRef]
- Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. Green Ultrasound-Assisted Extraction of Carotenoids from Pomegranate Wastes Using Vegetable Oils. Ultrason. Sonochem 2017, 34, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhao, M.; Shi, J.; Yang, N.; Jiang, Y. Effect of Ultrasonic Treatment on the Recovery and DPPH Radical Scavenging Activity of Polysaccharides from Longan Fruit Pericarp. Food Chem. 2008, 106, 685–690. [Google Scholar] [CrossRef]
- Tournour, H.H.; Segundo, M.A.; Magalhães, L.M.; Barreiros, L.; Queiroz, J.; Cunha, L.M. Valorization of Grape Pomace: Extraction of Bioactive Phenolics with Antioxidant Properties. Ind. Crops Prod. 2015, 74, 397–406. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Drevelegka, I.; Goula, A.M. Recovery of Grape Pomace Phenolic Compounds through Optimized Extraction and Adsorption Processes. Chem. Eng. Process.-Process Intensif. 2020, 149, 107845. [Google Scholar] [CrossRef]
- Cueva, C.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial Activity of Phenolic Acids against Commensal, Probiotic and Pathogenic Bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial Activity and Composition Profile of Grape (Vitis vinifera) Pomace Extracts Obtained by Supercritical Fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Xu, C.; Yagiz, Y.; Hsu, W.Y.; Simonne, A.; Lu, J.; Marshall, M.R. Antioxidant, Antibacterial, and Antibiofilm Properties of Polyphenols from Muscadine Grape (Vitis Rotundifolia Michx.) Pomace against Selected Foodborne Pathogens. J. Agric. Food Chem. 2014, 62, 6640–6649. [Google Scholar] [CrossRef]
- Özkan, G.; Sagdiç, O.; Baydar, N.G.; Kurumahmutoglu, Z. Antibacterial Activities and Total Phenolic Contents of Grape Pomace Extracts. J. Sci. Food Agric. 2004, 84, 1807–1811. [Google Scholar] [CrossRef]
- Labanca, F.; Faraone, I.; Nolè, M.R.; Hornedo-Ortega, R.; Russo, D.; García-Parrilla, M.C.; Chiummiento, L.; Bonomo, M.G.; Milella, L. New Insights into the Exploitation of Vitis vinifera L. cv. Aglianico Leaf Extracts for Nutraceutical Purposes. Antioxidants 2020, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Mejía, E.; Roriz, C.L.; Heleno, S.A.; Calhelha, R.; Dias, M.I.; Pinela, J.; Rosales-Conrado, N.; León-González, M.E.; Ferreira, I.C.F.R.; Barros, L. Valorisation of Black Mulberry and Grape Seeds: Chemical Characterization and Bioactive Potential. Food Chem. 2021, 337, 127998. [Google Scholar] [CrossRef] [PubMed]
- Felhi, S.; Baccouch, N.; Ben Salah, H.; Smaoui, S.; Allouche, N.; Gharsallah, N.; Kadri, A. Nutritional Constituents, Phytochemical Profiles, In Vitro Antioxidant and Antimicrobial Properties, and Gas Chromatography–Mass Spectrometry Analysis of Various Solvent Extracts from Grape Seeds (Vitis vinifera L.). Food Sci. Biotechnol. 2016, 25, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Sanhueza, L.; Melo, R.; Montero, R.; Maisey, K.; Mendoza, L.; Wilkens, M. Synergistic Interactions between Phenolic Compounds Identified in Grape Pomace Extract with Antibiotics of Different Classes against Staphylococcus Aureus and Escherichia Coli. PLoS ONE 2017, 12, e0172273. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Encinar, J.A.; Rodríguez-Díaz, J.C.; Micol, V. Antimicrobial Capacity of Plant Polyphenols against Gram-Positive Bacteria: A Comprehensive Review. Curr. Med. Chem. 2018, 27, 2576–2606. [Google Scholar] [CrossRef]
- Steenackers, H.; Hermans, K.; Vanderleyden, J.; De Keersmaecker, S.C.J. Salmonella Biofilms: An Overview on Occurrence, Structure, Regulation and Eradication. Food Res. Int. 2012, 45, 502–531. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol Screening of Pomace from Red and White Grape Varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Oldoni, T.L.; DA Silva, R.C.; Carpes, S.T.; Massarioli, A.P.; De Alencar, S.M. Antioxidant Activity and Development of One Chromatographic Method to Determine the Phenolic Compounds from Agroindustrial Pomace. An. Acad. Bras. Cienc. 2020, 92, e20181068. [Google Scholar] [CrossRef] [PubMed]
- Costa-Pérez, A.; Medina, S.; Sánchez-Bravo, P.; Domínguez-Perles, R.; García-Viguera, C. The (Poly)Phenolic Profile of Separate Winery by-Products Reveals Potential Antioxidant Synergies. Molecules 2023, 28, 2081. [Google Scholar] [CrossRef] [PubMed]
- Alibante, A.; Lakka, A.; Bozinou, E.; Chatzilazarou, A.; Lalas, S.; Makris, D.P. Integrated Green Process for the Extraction of Red Grape Pomace Antioxidant Polyphenols Using Ultrasound-assisted Pretreatment and Β-cyclodextrin. Beverages 2021, 7, 59. [Google Scholar] [CrossRef]
N° | Plant Material | Extraction Buffer | Grape Pomace/ Solvent Ratio | Extraction Temperature | Extraction Time | Ultrasound Frequency | Extract Acromyn |
---|---|---|---|---|---|---|---|
1 | Dry grape pomace of Aglianico (V. vinifera L.) | 100% distilled water | 1:10 | 25 °C | 15 min | 20 kHz | GpAE1 |
2 | 25 °C | 15 min | 40 kHz | GpAE2 | |||
3 | 25 °C | 30 min | 20 kHz | GpAE3 | |||
4 | 25 °C | 30 min | 40 kHz | GpAE4 | |||
5 | 50 °C | 15 min | 20 kHz | GpAE5 | |||
6 | 50 °C | 15 min | 40 kHz | GpAE6 | |||
7 | 50 °C | 30 min | 20 kHz | GpAE7 | |||
8 | 50 °C | 30 min | 40 kHz | GpAE8 | |||
9 | Ethanol and distilled water at 50% (v/v) | 25 °C | 15 min | 20 kHz | GpHE1 | ||
10 | 25 °C | 15 min | 40 kHz | GpHE2 | |||
11 | 25 °C | 30 min | 20 kHz | GpHE3 | |||
12 | 25 °C | 30 min | 40 kHz | GpHE4 | |||
13 | 50 °C | 15 min | 20 kHz | GpHE5 | |||
14 | 50 °C | 15 min | 40 kHz | GpHE6 | |||
15 | 50 °C | 30 min | 20 kHz | GpHE7 | |||
16 | 50 °C | 30 min | 40 kHz | GpHE8 |
Antibacterial Agent | S. aureus ATCC 25923 | B. cereus BC3 | E. coli ATCC 25922 | S. Typhimurium ST1 | ||||
---|---|---|---|---|---|---|---|---|
MIC (mg mL−1) | MBC (mg mL−1) | MIC (mg mL−1) | MBC (mg mL−1) | MIC (mg mL−1) | MBC (mg mL−1) | MIC (mg mL−1) | MBC (mg mL−1) | |
GpHE6 | 15 | 40 | 20 | 50 | 40 | 60 | 60 | nd |
VNC | 0.0015 | 0.0025 | nt | nt | nt | nt | nt | nt |
AMX | Nt | nt | 0.003 | 0.005 | nt | nt | nt | nt |
GNT | Nt | nt | nt | nt | 0.004 | 0.01 | 0.005 | 0.02 |
GpHE6+VNC (1:1 ratio) | 0.001 | 0.002 | nt | nt | nt | nt | nt | nt |
GpHE6+AMX (1:1 ratio) | Nt | nt | 0.001 | 0.005 | nt | nt | nt | nt |
GpHE6+GNT (1:1 ratio) | Nt | nt | nt | nt | 0.004 | 0.01 | 0.005 | 0.02 |
Bacterial Isolate | Binary Combinations | Individual FIC | FIC Index (FICI) | Interaction Interpretation |
---|---|---|---|---|
S. aureus ATCC 25923 | GpHE6+VNC | 0.0001–0.6667 | 0.6668 | partial synergy |
B. cereus BC3 | GpHE6+AMX | 0.0001–0.3333 | 0.3334 | synergy |
E. coli ATCC 25922 | GpHE6+GNT | 0.0001–1.0000 | 1.0001 | indifference |
S. Typhimurium ST1 | GpHE6+GNT | 0.0001–1.1000 | 1.1000 | indifference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sateriale, D.; Forgione, G.; Di Rosario, M.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Vine-Winery Byproducts as Precious Resource of Natural Antimicrobials: In Vitro Antibacterial and Antibiofilm Activity of Grape Pomace Extracts against Foodborne Pathogens. Microorganisms 2024, 12, 437. https://doi.org/10.3390/microorganisms12030437
Sateriale D, Forgione G, Di Rosario M, Pagliuca C, Colicchio R, Salvatore P, Paolucci M, Pagliarulo C. Vine-Winery Byproducts as Precious Resource of Natural Antimicrobials: In Vitro Antibacterial and Antibiofilm Activity of Grape Pomace Extracts against Foodborne Pathogens. Microorganisms. 2024; 12(3):437. https://doi.org/10.3390/microorganisms12030437
Chicago/Turabian StyleSateriale, Daniela, Giuseppina Forgione, Martina Di Rosario, Chiara Pagliuca, Roberta Colicchio, Paola Salvatore, Marina Paolucci, and Caterina Pagliarulo. 2024. "Vine-Winery Byproducts as Precious Resource of Natural Antimicrobials: In Vitro Antibacterial and Antibiofilm Activity of Grape Pomace Extracts against Foodborne Pathogens" Microorganisms 12, no. 3: 437. https://doi.org/10.3390/microorganisms12030437