Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors
Abstract
:1. Introduction
- (i)
- Since the transient transfection-based production system is the easiest and most straightforward to put into place, and in addition is characterized by its flexibility, most of the AAV vector preparations used for the early stages of product development are produced with this manufacturing method [13]. Furthermore, this production system has been scaled-up to a scale of several thousand liters (e.g., [14], https://www.biopharma-reporter.com/Article/2019/08/22/Pfizer-puts-half-a-billion-into-gene-therapy-facility accessed on 20 November 2023) because in most of the cases there are no time and financial resources available for switching from the rather simple transfection-based production protocol to another production method characterized by elevated scalability, reduced manufacturing costs, etc., as, for instance, provided by stable producer cell lines.
- (ii)
- Three of the approved products are produced with the baculovirus system, which shows a much better scalability and productivity, in particular after profound optimization, than the classical transfection-based production protocol [15]. The scale-up of the baculovirus-based production system to several thousand liters is feasible and was shown for the production of influenza viral-hemagglutinin (HA) protein antigens for vaccination purposes [16]. This production protocol is much simpler because the cells have to be only infected with 1–3 different baculoviruses (see below), and it is characterized by reduced variability in comparison to the transfection method. However, when it comes to vector potency, then a mammalian production system might be preferable because it was shown that the post-transcriptional modifications as well as vector methylation are not identical in mammalian and insect cell systems—rAAV vectors produced by the latter system show a reduced in vivo potency [17].Nevertheless, the use of stable rAAV producer cell lines, which can be simply induced by a chemical (without addition of helper virus) to rAAV production, would be preferable because no baculovirus—a contaminant—will be co-produced or need to be removed during purification, and its absence has to be proven in the final rAAV preparation [18].
2. Different AAV Production Methods (A Short Overview)
2.1. Wild-Type AAV
2.2. Recombinant AAV Vectors
3. Stable Packaging and Producer Cell Lines
3.1. HeLa- and A549-Based Packaging and Producer Cell Lines
3.1.1. HeLa Cell-Based Packaging Cell Lines
3.1.2. HeLa Cells versus A549 Cells
3.1.3. Producer Cell Lines
Use of Different Helper Viruses: Adenovirus Versus Herpes Simplex Virus 1
Use of the Producer Cell Approach for the Production of Large rAAV Vector Preparations
3.2. HEK293- and CAP-Based Packaging and Producer Cell Lines
3.3. Insect Cell-Based Packaging Cell Lines
4. Comparisons of the Different rAAV Production Systems
5. Conclusions
Funding
Conflicts of Interest
References
- Warrington, K.H., Jr.; Herzog, R.W. Treatment of human disease by adeno-associated viral gene transfer. Hum. Genet. 2006, 119, 571–603. [Google Scholar] [CrossRef]
- Bainbridge, J.W.; Smith, A.J.; Barker, S.S.; Robbie, S.; Henderson, R.; Balaggan, K.; Viswanathan, A.; Holder, G.E.; Stockman, A.; Tyler, N.; et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med. 2008, 358, 2231–2239. [Google Scholar] [CrossRef]
- Maguire, A.M.; High, K.A.; Auricchio, A.; Wright, J.F.; Pierce, E.A.; Testa, F.; Mingozzi, F.; Bennicelli, J.L.; Ying, G.S.; Rossi, S.; et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: A phase 1 dose-escalation trial. Lancet 2009, 374, 1597–1605. [Google Scholar] [CrossRef]
- Simonelli, F.; Maguire, A.M.; Testa, F.; Pierce, E.A.; Mingozzi, F.; Bennicelli, J.L.; Rossi, S.; Marshall, K.; Banfi, S.; Surace, E.M.; et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther. 2010, 18, 643–650. [Google Scholar] [CrossRef] [PubMed]
- High, K.A. Clinical gene transfer studies for hemophilia B. Semin. Thromb. Hemost. 2004, 30, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Manno, C.S.; Pierce, G.F.; Arruda, V.R.; Glader, B.; Ragni, M.; Rasko, J.J.; Ozelo, M.C.; Hoots, K.; Blatt, P.; Konkle, B.; et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 2006, 12, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Rodino-Klapac, L.R.; Janssen, P.M.; Montgomery, C.L.; Coley, B.D.; Chicoine, L.G.; Clark, K.R.; Mendell, J.R. A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J. Transl. Med. 2007, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Ylä-Hertualla, S. Endgame: Glybera finally recommended for approval as the first gene therapy drug in the European union. Mol. Ther. 2012, 20, 1831–1832. [Google Scholar] [CrossRef] [PubMed]
- Padhy, S.K.; Takkar, B.; Narayana, R.; Venkatesh, P.; Jalali, S. Voretigene Neparvovec and gene therapy for Leber’s congenital amaurosis: Review of evidence to date. Appl. Clin. Genet. 2020, 13, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Kotulska, K.; Fattal-Valevski, A.; Haberlova, J. Recombinant adeno-associated virus serotype 9 gene therapy in spinal muscular atrophy. Front. Neurol. 2021, 12, 726468. [Google Scholar] [CrossRef] [PubMed]
- Soroka, A.B.; Feoktistova, S.G.; Mityaeva, O.N.; Volchkov, M.Y. Gene therapy approaches for the treatment of hemophilia B. Int. J. Mol. Sci. 2023, 24, 10766. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Eladocagene Exuparvovec: First approval. Drugs 2022, 82, 1427–1432. [Google Scholar] [CrossRef]
- Wright, J.F. Transient transfection methods for clinical adeno-associated viral vector production. Hum. Gene Ther. 2009, 20, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Thorne, B.; Takeya, R.; Vitelli, F.; Swanson, X. Gene therapy. In New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins; Advances in Biochemical Engineering/Biotechnology Series; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Cecchini, S.; Virag, T.; Kotin, R.M. Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02 to 200 liter cultures. Hum. Gene Ther. 2011, 22, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Buckland, B.; Boulanger, R.; FinoI, M.; Srivastava, I.; Holtz, K.; Khramtsov, N.; McPherson, C.; Meghrous, J.; Kubera, P.; Cox, M.M.J. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process. Vaccine 2014, 32, 5496–5502. [Google Scholar] [CrossRef] [PubMed]
- Rumachik, N.G.; Malaker, S.A.; Poweleit, N.; Maynard, L.H.; Adams, C.M.; Leib, R.D.; Cirolia, G.; Thomas, D.; Stamnes, S.; Holt, K.; et al. Methods matter: Standard production platforms for recombinant AAV produce chemically and functionally distinct vectors. Mol. Ther. Methods Clin. Dev. 2020, 18, 98–118. [Google Scholar] [CrossRef]
- Penaud-Budloo, M.; François, A.; Clément, N.; Ayuso, E. Pharmacology of recombinant adeno-associated virus production. Mol. Ther. Methods Clin. Dev. 2018, 8, 166–180. [Google Scholar] [CrossRef]
- Aucoin, M.G.; Perrier, M.; Kamen, A.A. Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol. Adv. 2008, 26, 73–88. [Google Scholar] [CrossRef]
- Thomas, D.G.; Wang, L.; Niamke, J.; Liu, J.; Kang, W.; Scotti, M.M.; Ye, G.J.; Veres, G.; Knop, D.R. Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum. Gene Ther. 2009, 20, 861–887. [Google Scholar] [CrossRef]
- Thorne, B.A.; Takeya, R.K.; Peluso, R.W. Manufacturing recombinant adeno-associated viral vectors from producer cell clones. Hum. Gene Ther. 2009, 20, 707–714. [Google Scholar] [CrossRef]
- Martin, J.; Frederick, A.; Luo, Y.; Jackson, R.; Joubert, M.; Sol, B.; Poulin, F.; Pastor, E.; Armentano, D.; Wadsworth, S.; et al. Generation and characterization of Adeno-Associated Virus producer cell lines for research and preclinical vector production. Hum. Gene Ther. 2013, 24, 253–269. [Google Scholar] [CrossRef]
- Grieger, J.C.; Soltys, S.M.; Samulski, R.J. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol. Ther. 2016, 24, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Galibert, L.; Merten, O.-W. Latest developments in the large-scale production of adeno-associated virus vectors in insect cells toward the treatment of neuromuscular diseases. J. Invertebr. Pathol. 2011, 107, S80–S93. [Google Scholar] [CrossRef] [PubMed]
- Tratschin, J.D.; Miller, I.L.; Carter, B.J. Genetic analysis of adeno-associated virus: Properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function. J. Virol. 1984, 51, 611–619. [Google Scholar] [CrossRef]
- Srivastava, A.; Lusby, E.W.; Berns, K.I. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J. Virol. 1983, 45, 555–564. [Google Scholar] [CrossRef]
- Sonntag, F.; Schmidt, K.; Keinschmidt, J.A. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc. Natl. Acad. Sci. USA 2010, 107, 10220–10225. [Google Scholar] [CrossRef]
- Weitzman, M.D.; Kyostio, S.R.; Kotin, R.M.; Owens, R.A. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc. Natl. Acad. Sci. USA 1994, 91, 5808–5812. [Google Scholar] [CrossRef]
- Horer, M.; Weger, S.; Butz, K.; Hoppe-Seyler, F.; Geisen, C.; Kleinschmidt, J.A. Mutational analysis of adeno-associated virus Rep protein-mediated inhibition of heterologous and homologous promoters. J. Virol. 1995, 69, 5485–5496. [Google Scholar] [CrossRef]
- Mansilla-Soto, J.; Yoon-Robarts, M.; Rice, W.J.; Arya, S.; Escalante, C.R.; Linden, R.M. DNA structure modulates the oligomerization properties of the AAV initiator protein Rep68. PLoS Pathog. 2009, 5, e1000513. [Google Scholar] [CrossRef]
- Pereira, D.J.; McCarty, D.M.; Muzyczka, N. The adeno-associated virus (AAV) Rep protein acts as both a repressor and an activator to regulate AAV transcription during a productive infection. J. Virol. 1997, 71, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Dubielzig, R.; Grimm, D.; Kleinschmidt, J.A. DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J. 2001, 20, 3282–3291. [Google Scholar] [CrossRef]
- Naumer, M.; Sonntag, F.; Schmidt, K.; Nieto, K.; Panke, C.; Davey, N.E.; Popa-Wagner, R.; Kleinschmidt, J.A. Properties of the adeno-associated virus assembly activating protein. J. Virol. 2012, 86, 13038–13048. [Google Scholar] [CrossRef] [PubMed]
- Maurer, A.C.; Pacouret, S.; Cepeda Diaz, A.K.; Blake, J.; Andres-Mateos, E.; Vandenberghe, L.H. The assembly-activating protein promotes stability and interactions between AAV’s viral proteins to nucleate capsid assembly. Cell Rep. 2018, 23, 1817–1830. [Google Scholar] [CrossRef]
- Maurer, A.C.; Diaz, A.K.C.; Vandenberghe, L.H. Residues on adeno-associated virus capsid lumen dictate interactions and compatibility with the assembly activating protein. J. Virol. 2019, 93, e02013-18. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef]
- Matsushita, T.; Elliger, S.; Elliger, C.; Podsakoff, G.; Villarreal, L.; Kurtzman, G.J.; Iwaki, Y.; Colosi, P. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 1998, 5, 938–945. [Google Scholar] [CrossRef]
- Salvetti, A.; Orève, S.; Chadeuf, G.; Favre, D.; Cherel, Y.; Champion-Arnaud, P.; David-Ameline, J.; Moullier, P. Factors influencing recombinant adeno-associated virus production. Hum. Gene Ther. 1998, 9, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Li, J.; Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 1998, 72, 2224–2323. [Google Scholar] [CrossRef]
- Collaco, R.F.; Cao, X.; Trempe, J.P. A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 1999, 238, 397–405. [Google Scholar] [CrossRef]
- Grimm, D.; Kern, A.; Pawlita, M.; Ferrari, F.; Samulski, R.; Kleinschmidt, J. Titration of AAV-2 particles via a novel capsid ELISA: Packaging of genomes can limit production of recombinant AAV-2. Gene Ther. 1999, 6, 1322–1330. [Google Scholar] [CrossRef]
- Grimm, D.; Kleinschmidt, J.A. Progress in adeno-associated virus type 2 vector production: Promises and prospects for clinical use. Hum. Gene Ther. 1999, 10, 2445–2450. [Google Scholar] [CrossRef]
- van der Loo, J.C.M.; Wright, J.F. Progress and challenges in viral vector manufacturing. Hum. Mol. Genet. 2016, 25, R42–R52. [Google Scholar] [CrossRef]
- Moleirinho, M.G.; Silva, R.J.S.; Alves, P.A.; Carrondo, M.J.T.; Peixoto, C. Current challenges in biotherapeutic particles manufacturing. Expert Opin. Biol. Ther. 2020, 20, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Urabe, M.; Ding, C.; Kotin, R.M. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 2002, 13, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Kohlbrenner, E.; Aslanidi, G.; Nash, K.; Shklyaev, S.; Campbell-Thompson, M.; Byrne, B.J.; Snyder, R.O.; Muzyczka, N.; Warrington, K.H., Jr.; Zolotukhin, S. Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol. Ther. 2005, 12, 1217–1225. [Google Scholar] [CrossRef]
- Chen, H. Intron splicing-mediated expression of AAV rep and cap genes and production of AAV vectors in insect cells. Mol. Ther. 2008, 16, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.H.; Levy, J.R.; Kotin, R.M. A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol. Ther. 2009, 17, 1888–1896. [Google Scholar] [CrossRef]
- Galibert, L.; Jacob, A.; Savy, A.; Dickx, Y.; Bonnin, D.; Lecomte, C.; Rivollet, L.; Sanatine, P.; Boutin Fontaine, M.; Le Bec, C.; et al. Monobac system—A single baculovirus for the production of rAAV. Microorganisms 2021, 9, 1799. [Google Scholar] [CrossRef] [PubMed]
- Aslanidi, G.; Lamb, K.; Zolotukhin, S. An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells. Proc. Natl. Acad. Sci. USA 2009, 106, 5059–5064. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.E.; Rhys, C.M.J.; Zolotukhin, I.; Zolotukhin, S.; Muzyczka, N.; Hayward, G.S.; Byrne, B.J. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther. 1999, 6, 986–993. [Google Scholar] [CrossRef]
- Knop, D.R.; Harrell, H. Bioreactor production of recombinant herpes simplex virus vectors. Biotechnol. Prog. 2007, 23, 715–721. [Google Scholar] [CrossRef]
- Kang, W.; Wang, L.; Harrell, H.; Liu, J.; Thomas, D.L.; Mayfield, T.L.; Scotti, M.M.; Ye, G.J.; Veres, G.; Knop, D.R. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes. Gene Ther. 2009, 16, 229–239. [Google Scholar] [CrossRef]
- Adamson-Small, L.; Potter, M.; Falk, D.J.; Cleaver, B.; Byrne, B.J.; Clément, N. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol. Ther. Methods Clin. Dev. 2016, 3, 16031. [Google Scholar] [CrossRef] [PubMed]
- Samulski, R.J.; Chang, L.S.; Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 1987, 61, 3096–3101. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.R.; Voulgaropoulou, F.; Fraley, D.M.; Johnson, J.P. Cell lines for the production of recombinant adeno–associated virus. Hum. Gene Ther. 1995, 6, 1329–1341. [Google Scholar] [CrossRef] [PubMed]
- Farson, D.; Harding, T.C.; Tao, L.; Liu, J.; Powell, S.; Vimal, V.; Yendluri, S.; Koprivnikar, K.; Ho, K.; Twitty, C.; et al. Development and characterization of a cell line for large-scale, serum-free production of recombinant adeno-associated viral vectors. J. Gene Med. 2004, 6, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Clark, K.R.; Johnson, P.R. Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Ther. 1999, 6, 293–299. [Google Scholar] [CrossRef]
- Liu, X.; Voulgaropoulou, F.; Chen, R.; Johnson, P.R.; Clark, K.R. Selective Rep-Cap gene amplification as a mechanism for high-titer recombinant AAV production from stable cell lines. Mol. Ther. 2000, 2, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Tessier, J.; Chadeuf, G.; Nony, P.; Avet-Loiseau, H.; Moullier, P.; Salvetti, A. Characterization of adenovirus-induced inverted terminal repeat-independent amplification of integrated adeno-associated virus rep-cap sequences. J. Virol. 2001, 75, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Wilson, J.M.; Wivel, N.A. Production of recombinant adeno-associated virus. In Advances in Virus Research; Maramorosch, K., Murphy, F.A., Shatkin, A.J., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 529–544. [Google Scholar]
- Gao, G.P.; Qu, G.; Faust, L.Z.; Engdahl, R.K.; Xiao, W.; Hughes, J.V.; Zoltick, P.W.; Wilson, J.M. High-titer adeno–associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum. Gene Ther. 1998, 9, 2353–2362. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, J.; Xie, Q.; Wilson, J.M.; Gao, G. Adenovirus—Adeno-Associated virus hybrid for large-scale recombinant Adeno-Associated Virus production. Hum. Gene Ther. 2009, 20, 922–929. [Google Scholar] [CrossRef]
- Allen, J.M.; Debelak, D.J.; Reynolds, T.C.; Miller, A.D. Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production. J. Virol. 1997, 71, 6816–6822. [Google Scholar] [CrossRef]
- Su, W.; Patrício, M.I.; Duffy, M.R.; Krakowiak, J.M.; Seymour, L.W.; Cawood, R. Self-attenuating adenovirus enables production of recombinant adeno-associated virus for high manufacturing yield without contamination. Nat. Commun. 2022, 13, 1182. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Seymour, L.W.; Cawood, R. AAV production in stable packaging cells requires expression of adenovirus 22/33K protein to allow episomal amplification of integrated rep/cap genes. Sci. Rep. 2023, 13, 21670. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.P.; Lu, F.; Sanmiguel, J.C.; Tran, P.T.; Abbas, Z.; Lynd, K.S.; Marsh, J.; Spinner, N.B.; Wilson, J.M. Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap. Mol. Ther. 2002, 5, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Giard, D.J.; Aaronson, S.A.; Todaro, G.J.; Arnstein, P.; Kersey, J.H.; Dosik, H.; Parks, W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 1973, 51, 1417–1423. [Google Scholar] [CrossRef]
- Blouin, V.; Brument, N.; Toublanc, E.; Raimbaud, I.; Moullier, P.; Salvetti, A. Improving rAAV production and purification: Towards the definition of a scaleable process. J. Gene Med. 2004, 6 (Suppl. S1), S223–S228. [Google Scholar] [CrossRef]
- Toublanc, E.; Benraiss, A.; Bonnin, D.; Blouin, V.; Brument, N.; Cartier, N.; Epstein, A.L.; Moullier, P.; Salvetti, A. Identification of a replication-defective herpes simplex virus for recombinant adeno-associated virus type 2 (rAAV2) particle assembly using stable producer cell lines. J. Gene Med. 2004, 6, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Matthews, L.C.; Gray, J.T.; Gallagher, M.R.; Snyder, R.O. Recombinant adeno-associated viral vector production using stable packaging and producer cell lines. Methods Enzymol. 2002, 346, 393–413. [Google Scholar]
- Thorne, B.A.; Quigley, P.; Nichols, G.; Moore, C.; Pastor, E.; Price, D.; Ament, J.W.; Takeya, R.K.; Peluso, R.W. Characterizing clearance of helper adenovirus by a clinical rAAV1 manufacturing process. Biologicals 2008, 36, 7–18. [Google Scholar] [CrossRef]
- Jenny, C.; Toublanc, E.; Danos, O.; Merten, O.-W. Evaluation of a serum-free medium for the production of rAAV-2 using HeLa derived producer cells. Cytotechnology 2005, 49, 11–23. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, B.; Zhu, X.; Li, J.; Xiao, X. A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines. J. Virol. 2002, 76, 13015–13027. [Google Scholar] [CrossRef]
- Yuan, Z.; Qiao, C.; Hu, P.; Li, J.; Xiao, X. A versatile adeno-associated virus vector producer cell line method for scalable vector production of different serotypes. Hum. Gene Ther. 2011, 22, 613–624. [Google Scholar] [CrossRef]
- Jalšić, L.; Lytvyn, V.; Elahi, C.M.; Hrapovic, S.; Nassoury, N.; Chahal, P.S.; Gaillet, B.; Gilbert, R. Inducible HEK293 AAV packaging cell lines expressing Rep proteins. Mol. Ther. Methods Clin. Dev. 2023, 30, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Lu, M.; Irfanullah, I.; Soukup, M.; Hu, W.-S. Construction of an rAAV producer cell line through synthetic biology. ACS Synth. Biol. 2022, 11, 3285–3295. [Google Scholar] [CrossRef]
- Lu, M.; Lee, Z.; Lin, Y.-C.; Irfanullah, I.; Cai, W.; Hu, W.-S. Enhancing the production of recombinant adeno-associated virus in synthetic cell lines through systematic characterization. Biotechnol. Bioeng. 2024, 121, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Schiedner, G.; Hertel, S.; Kochanek, S. Efficient Transformation of Primary Human Amniocytes by E1 Functions of Ad5: Generation of New Cell Lines for Adenoviral Vector Production. Hum. Gene Ther. 2000, 11, 2105–2116. [Google Scholar] [CrossRef]
- Schiedner, G.; Hertel, S.; Bialek, C.; Kewes, H.; Waschütza, G.; Volpers, C. Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol. 2008, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Hein, K.; Faust, N.; Wissing, S. Inducible AAV Rep Genes. Patent WO2019/057691A1, 28 March 2019. [Google Scholar]
- Waring, D.; Joshi, A.; Coronel, J.; Niehus, C. Transfer and scale-up from 10 L BioBLU® to Allegro™ STR 50 and STR 200 Bioreactors. Cell Gene Ther. Insights 2021, 7, 1347–1362. [Google Scholar]
- Coronel, J.; Al-Dali, A.; Patil, A.; Srinivasan, K.; Braß, T.; Hein, K.; Wissing, S. High Titer rAAV production in bioreactor using ELEVECTA™ stable producer cell lines. In Proceedings of the ESGCT 2021 Digital Meeting, Virtual, 19–22 October 2021. [Google Scholar]
- Nony, P.; Tessier, J.; Chadeuf, G.; Ward, P.; Giraud, A.; Dugast, M.; Linden, M.; Moullier, P.; Salvetti, A. Novel cis-acting replication element in the Adeno-Associated Virus type 2 genome is involved in amplification of integrated rep-cap sequences. J. Virol. 2001, 75, 9991–9994. [Google Scholar] [CrossRef] [PubMed]
- Lackner, D.F.; Muzyczka, N. Studies of the mechanism of transactivation of the adeno-associated virus p19 promoter by Rep protein. J. Virol. 2002, 76, 8225–8235. [Google Scholar] [CrossRef]
- Mietzsch, M.; Grasse, S.; Zurawski, C.; Weger, S.; Bennett, A.; Agbandje-McKenna, M.; Muzyczka, N.; Zolotukhin, S.; Heilbronn, R. OneBac: Platform for scalable and high-titer production of Adeno-Associated Virus Serotype 1–12 vectors for gene therapy. Hum. Gene Ther. 2014, 25, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Mietzsch, M.; Casteleyn, V.; Weger, S.; Zolotukhin, S.; Heilbronn, R. OneBac 2.0: Sf9 cell lines for production of AAV5 vectors with enhanced infectivity and minimal encapsidation of foreign DNA. Hum. Gene Ther. 2015, 26, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Mei, T.; Jiang, L.; Han, Z.; Dong, R.; Yang, T.; Xu, F. Development of versatile and flexible Sf9 packaging cell line-dependent OneBac system for large-scale recombinant adeno-associated virus production. Hum. Gene Ther. 2019, 30, 172–183. [Google Scholar] [CrossRef]
- Moreno, F.; Lip, F.; Rojas, H.; Anggakusuma. Development of an insect cell-based adeno-associated virus packaging cell line employing advanced Rep gene expression control system. Mol. Ther. Methods Clin. Dev. 2022, 27, 391–403. [Google Scholar] [CrossRef]
- Emmerling, V.V.; Pegel, A.; Milian, E.G.; Venereo-Sanchez, A.; Kunz, M.; Wegele, J.; Kamen, A.A.; Kochanek, S.; Hoerer, M. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells. Biotechnol. J. 2016, 11, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Clément, N.; Knop, D.R.; Barry, B.J. Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum. Gene Ther. 2009, 20, 796–806. [Google Scholar] [CrossRef]
- Dickx, Y.; Nauwynck, L.; Galibert, L.; Savy, A.; Bonnin, D.; Mavilio, F.; Merten, O.-W. Comparison of truncated and wildtype ITRs—Impact on AAV vector production and quality. In Proceedings of the 16th International Parvovirus Workshop, Ajaccio, France, 19–23 June 2016. poster abstract. [Google Scholar]
- Merten, O.-W. AAV vector production: State of the art developments and remaining challenges. Cell Gene Ther. Insights 2016, 2, 521–551. [Google Scholar] [CrossRef]
- Chadeuf, G.; Ciron, C.; Moullier, P.; Salvetti, A. Evidence for encapsidation of prokaryotic sequences during recombinant adeno-associated virus production and their in vivo persistence after vector delivery. Mol. Ther. 2005, 12, 744–753. [Google Scholar] [CrossRef]
- Gao, G.; Wang, Q.; Wang, L.; Vandenberghe, L.; Lock, M.; Grant, R.; Wilson, J.M. Inadvertent gene transfer of co-packaged rep and cap sequences during the production of AAV vector and its potential impact on vector performance. Mol.Ther. 2008, 16, S105. [Google Scholar]
- Savy, A.; Dickx, Y.; Nauwynck, L.; Bonnin, D.; Merten, O.-W.; Galibert, L. Impact of inverted terminal repeat integrity on rAAV8 production using the baculovirus/Sf9 cells system. Hum. Gene Ther. Methods 2017, 28, 277–289. [Google Scholar] [CrossRef] [PubMed]
HEK293 Transfection | HEK293 Inducible Producer Cell Line | HEK293 Inducible Producer Cell Line | ELEVECTA (HEK293/CAP) | HeLa—Packaging Cell Line | HeLa—Producer Cell Line | TESSA System | rHSV Based Infection System | Baculovirus System (Sf9, 2 Viruses) | Monobac System | OneBac 2.0 System | Optimized Onebac System | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cell line | Selected clone of wildtype HEK293 | HEK293 containing all required functions, activation of rep functions after AdV infection | HEK293 containing all required functions | HEK293 or CAP cells containing all requried functions | HeLa containing rep & cap genes | HeLa containing rep & cap genes and rAAV vector construct | Wildtype HEK293 | sBHK21 | Wildtype Sf9 cells | Wildtype Sf9 cells | Sf9 cells containing the rep & cap genes, inducible upon baculovirus infection | Sf9 cells containing the rep genes, inducible upon baculovirus infection |
Induction of rAAV production | Transfec-tion using plasmids | Infection with AdV carrying the cre gene for inducing rep gene expression | Dual induction of gene expression using doxycycline & cumate | Induction using doxycycline | Infection with wtAdV & rAAV hybrid AdV | Infection with wtAdV or attenuated AdV or with HSV | Infection with 2 TESSAs delivering rep/cap genes & rAAV vector construct | Infection with 2 HSV1 viruses delivering rep/cap genes & rAAV vector construct | Infection with 2 baculovirus delivering rep/cap genes & rAAV vector construct | Infection with 1 baculovirus delivering all required functions | Infection with 1 baculovirus delivering the rAAV vector construct | Infection with 1 baculovirus delivering the cap genes and the rAAV vector construct |
Large scale | Several 1000 L (1) | Research grade | Research grade | At least 200L | Small scale | 2000 L | Large scale | 10–100L (WAVE) | 200L (STR, WAVE) | Small scale (2L STR) | Small scale | Probably developed for large scale production |
Cell specific pro-ductivity | 1–2 × 105 vg/c (AAV2) | 0.9–1.3 × 105 vg/c | 2.5 × 103−1.6 × 104 vg/c | No infor-mation | 2.2 × 104–5.9 × 105 gc/c | >5 × 104–>105 DRP/c | No infor-mation | 5.5 × 104–1.3 × 105 DRP/c (AAV8) | 3.7–9.6 × 104 vg/c | Up to 5 × 105 vg/c (AAV2) | 1–2 × 105 vg/c (AAV5) | ~105 gc/c |
Volumetric production | 1014 vg/L | 9 × 1013–1.3 × 1014 vg/L (6) | 1013 vg/L | 1014 vg/L–2 × 1016 vg/L (7) | 2.2 × 1013–5.9 × 1014 gc/L | >5 × 1013 vg/L | 2 × 1013 gc/L | 2.4 × 1014 DRP/L | 3–4 × 1015 vg/L | 6–7 × 1015 vg/L | 1.4 × 1015 vg/L | ~1014 gc/L |
rcAAV production | + (2) | No rcAAV/109 rAAV-vg | Probably no because rep and cap genes are separated with opposite transcriptional orientations | No infor-mation | No rcAAV/109 rAAV-vg | <0.0002% | No infor-mation | No (below detection limit) | No (below detection limit) | No (below detection limit) | No (below detection limit) | No infor-mation |
Full/empty particle ratio | 5–50% | No infor-mation | 24–56% (5) | 28–35% | No infor-mation | >50%–>70% | 15–20% | 5.5–8.3% | 10–40% (8) | 36% | No infor-mation | No infor-mation |
Encapsida-tion of helper sequences | Rep: 0.3–1.5% (3), Cap: 0.4–1% (4) | Not communi-cated | Not communi-cated | Not communi-cated | Not communi-cated | 0.02–0.05% (rep, cap) | ~2.5% rAAV contain AdV packaging signal (9) | HSV: 0.007–0.012% | Cap: 0.016%, Rep: 0.019–0.014% | Not communi-cated | Cap: 0.02%, Rep: <0.001% | Should be better than or equal to the OneBac 2.0 system |
Reference | Grieger et al. [23] | Yuan et al. [75] | Lu et al. [78] | Coronel et al. [83] | Gao et al. [62], Zhang et al. [63] | Thorne et al. [21], Martin et al. [22] | Su et al. [65] | Thomas et al. [20], Clément et al. [91], Kang et al. [53] | Smith et al. [48], Dickx et al. [92], Galibert et al. [49] | Galibert et al. [49], Merten [93] | Mietzsch et al. [87] | Moreno et al. [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merten, O.-W. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms 2024, 12, 384. https://doi.org/10.3390/microorganisms12020384
Merten O-W. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms. 2024; 12(2):384. https://doi.org/10.3390/microorganisms12020384
Chicago/Turabian StyleMerten, Otto-Wilhelm. 2024. "Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors" Microorganisms 12, no. 2: 384. https://doi.org/10.3390/microorganisms12020384