Comparative Study on Growth and Metabolomic Profiles of Six Lactobacilli Strains by Sodium Selenite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lactobacilli Strains
2.2. Se Accumulation of Lactobacilli Strains
2.3. Determination of the Quantity and Weight of Lactobacilli Strains
2.4. Metabolites Extraction
2.5. GC-TOF-MS Metabolite Profiling of Extracts
2.6. Data Processing and Statistical Analysis
3. Results
3.1. The Effect of Selenium on the Population of Six Lactobacilli Strains
3.2. The Effect of Selenium on the Weight of Six Lactobacilli Strains
3.3. Classification and Proportion of Metabolites Found in the Lactobacilli Strains
3.4. Principal Component Analysis of Lactobacilli Strains
3.5. Heatmap and Hierarchical Cluster Analysis of Lactobacilli Strains
3.6. Marked Metabolites Obtained by Comparison before and after Selenium Addition
3.7. Key Marked Metabolites Change
3.7.1. Amino Acids and Derivatives
3.7.2. Organic Acids and Derivatives
3.7.3. Carbohydrates and Their Analogues
3.7.4. Lipids and Lipid-like Molecules
3.7.5. Nucleosides, Nucleotides, Purines, Pyrimidines, Ribose, and Analogues
3.8. KEGG Enrichment Analysis of Metabolic Pathway Enrichment
3.8.1. ABC Transporters
3.8.2. Glycine, Serine, Threonine Metabolism and Other Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Castel, T.; Léon, K.; Gandubert, C.; Gueguen, B.; Amérand, A.; Guernec, A.; Théron, M.; Pichavant-Rafini, K. Comparison of sodium selenite and selenium-enriched spirulina supplementation effects after selenium deficiency on growth, tissue selenium concentrations, antioxidant activities, and aelenoprotein expression in rats. Biol. Trace Elem. Res. 2024, 202, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Jiao, L.; Ju, J.S. Effect of sodium selenite on the metabolite profile of Epichloë sp. mycelia from Festuca sinensis in solid culture. Biol. Trace Elem. Res. 2022, 200, 4865–4879. [Google Scholar] [CrossRef]
- Yazdi, M.H.; Mahdavi, M.; Kheradmand, E.; Shahverdi, A.R. The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice. Arzneimittelforschung 2012, 62, 525–531. [Google Scholar] [CrossRef]
- Peñas, E.; Martinez-Villaluenga, C.; Frias, J.; Sánchez-Martínez, M.J.; Pérez-Corona, M.T.; Madrid, Y.; Cámara, C.; Vidal-Valverde, C. Se improves indole glucosinolate hydrolysis products content, Se-methylselenocysteine content, antioxidant capacity and potential anti-inflammatory properties of sauerkraut. Food Chem. 2012, 132, 907–914. [Google Scholar] [CrossRef]
- Kieliszek, M.; Blazejak, S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Yin, X.; Naveed, M.; Aslam, S.; Chan, M.W.H.; Bo, S.; Wang, F.H.; Xu, B.; Xu, B.C.; Yu, Z. Study of selenium enrichment metabolomics in Bacillus subtilis BSN313 via transcriptome analysis. Biotechnol. Appl. Biochem. 2024, 71, 609–626. [Google Scholar] [CrossRef]
- He, P.; Zhang, M.M.; Zhang, Y.Z.; Wu, H.; Zhang, X.Y. Effects of selenium enrichment on dough fermentation characteristics of baker’s yeast. Foods 2023, 12, 2343. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, L.; Wu, Y.Q.; Li, C.S.; Fu, P.C.; Liu, J. Isolation and identification of green alga Chlorella vulgaris HNUFU001 for environmental selenium enrichment in heterotrophic growth regime. Algal Res. 2023, 75, 103299. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Flemming, H.R.; Cogan, T.; Hodgson, C.; Davies, D.R. Assessing the ability of silage lactic acid bacteria to incorporate and transform inorganic selenium within laboratory scale silos. Anim. Feed. Sci. Technol. 2019, 253, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.W.; Zhou, K.; Zhang, J.L.; Chen, Q.; Liu, G.; Shang, N.; Qin, W.; Li, P.; Lin, F.X. Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01. Food Chem. 2008, 115, 727–734. [Google Scholar] [CrossRef]
- Martínez, F.G.; Moreno-Martin, G.; Pescuma, M.; Madrid-Albarrán, Y.; Mozzi, F. Biotransformation of selenium by lactic acid bacteria: Formation of seleno-nanoparticles and seleno-amino acids. Front. Bioeng. Biotechnol. 2020, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Stabnikova, O.; Khonkiv, M.; Kovshar, I.; Stabnikov, V. Biosynthesis of selenium nanoparticles by lactic acid bacteria and areas of their possible applications. World J. Microbiol. Biotechnol. 2023, 39, 230. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.K.; Chen, L.; Liang, J.Q. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus. J. Agric. Food Chem. 2007, 55, 2413–2417. [Google Scholar] [CrossRef] [PubMed]
- Parlindungan, E.; Jones, O.A.H. Using metabolomics to understand stress responses in lactic acid bacteria and their applications in the food industry. Metabolomics 2023, 19, 99. [Google Scholar] [CrossRef]
- Linares, D.M.; Gómez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic acid bacteria and Bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front. Microbiol. 2017, 8, 846. [Google Scholar] [CrossRef]
- Saide, J.A.O.; Gilliland, S.E. Antioxidative activity of Lactobacilli measured by oxygen radical absorbance capacity. Dairy Sci. 2005, 88, 1352–1357. [Google Scholar] [CrossRef]
- Van den Ende, W.; Peshev, D.; De Gara, L. Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends Food Sci. Technol. 2011, 22, 689–697. [Google Scholar] [CrossRef]
- Moradi, H.; Pahl, M.V.; Elahimehr, R.; Vaziri, N.D. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl. Res. 2009, 153, 77–85. [Google Scholar] [CrossRef]
- Ghaedi, M.; Ahmadi, F.; Soylak, M. Simultaneous preconcentration of copper, nickel, cobalt and lead ions prior to their flame atomic absorption spectrometric determination. Ann. Chim. 2007, 97, 277–285. [Google Scholar] [CrossRef]
- Liao, J.J.; Wang, C.H. Factors affecting selenium-enrichment efficiency, metabolic mechanisms and physiological functions of selenium-enriched lactic acid bacteria. J. Future Foods 2022, 2, 285–293. [Google Scholar] [CrossRef]
- Lamberti, C.; Mangiapane, E.; Pessione, A.; Mazzoli, R.; Giunta, C.; Pessione, E. Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications. Proteomics 2011, 11, 2212–2221. [Google Scholar] [CrossRef]
- Mrvikova, I.; Hyrslova, I.; Kana, A.; Kantorova, V.; Lampova, B.; Doskocil, I.; Krausova, G. Selenium enriched bifidobacteria and lactobacilli as potential dietary supplements. World J. Microbiol. Biotechnol. 2024, 40, 145. [Google Scholar] [CrossRef]
- Martínez, F.G.; Moreno-Martín, G.; Mohamed, F.; Pescuma, M.; Madrid-Albarrán, Y.; Mozzi, F. Selenium-enriched fermented beverage with improved sensorial properties using lactic acid bacteria. Food Sci. Technol. 2024, 1–12. [Google Scholar] [CrossRef]
- Fang, Y.H.; Zhang, Y.M.; Yue, S.Y.; Peng, J.J.; Liu, C.X.; Wang, C.H. Improving catalytic activity, acid-tolerance, and thermal stability of glutathione peroxidase by systematic site-directed selenocysteine incorporation. Mol. Biotechnol. 2023, 65, 1644–1652. [Google Scholar] [CrossRef]
- Wang, M.; Meng, J.H.; Huang, L.; Bai, Y.X.; Liu, X.L.; Li, S.B. Quantitative proteome analysis revealed metabolic changes in Arthrospira platensis in response to selenium stress. Eur. Food Res. Technol. 2022, 248, 839–856. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, M.Y.; Zhou, Y.; Yang, H.L.; Liao, Y.H.; Wang, F.H. Optimized methyl donor and reduced precursor degradation pathway for seleno-methylselenocysteine production in Bacillus subtilis. Microb. Cell Fact. 2023, 22, 215. [Google Scholar] [CrossRef]
- Pescuma, M.; Gomez-Gomez, B.; Perez-Corona, T.; Font, G.; Madrid, Y.; Mozzi, F. Food prospects of selenium enriched-Lactobacillus acidophilus CRL 636 and Lactobacillus reuteri CRL 1101. J. Funct. Foods 2017, 35, 466–473. [Google Scholar] [CrossRef]
- Palomo, M.; Gutiérrez, A.M.; Pérez-Conde, M.C.; Cámara, C.; Madrid, Y. Se metallomics during lactic fermentation of Se-enriched yogurt. Food Chem. 2014, 164, 371–379. [Google Scholar] [CrossRef]
- Li, X.L.; Chen, S.Y.; Zhao, L.L.; Zeng, X.P.; Liu, Y.Y.; Li, C.C.; Yang, Q.X. Effect of lactic acid bacteria by different concentrations of copper based on non-target metabolomic analysis. Environ. Sci. Pollut. Res. Int. 2023, 30, 107568–107579. [Google Scholar] [CrossRef]
- Hu, G.G.; Hu, H.Y.; Aziz, T.; Shao, H.B.; Yang, Z.N.; Alharbi, M.; Albekairi, T.H.; Alasmari, A.F. Depiction of the dairy product supplemented with the exopolysaccharide from Pediococcus acidilactici BCB1H by metabolomics analysis. J. Food Meas. Charact. 2023, 18, 1690–1704. [Google Scholar] [CrossRef]
- Gómez-Gómez, B.; Pérez-Corona, T.; Mozzi, F.; Pescuma, M.; Madrid, Y. Silac-based quantitative proteomic analysis of Lactobacillus reuteri CRL 1101 response to the presence of selenite and selenium nanoparticles. J. Proteom. 2019, 195, 53–65. [Google Scholar] [CrossRef]
- Hatfield, D.L.; Gladyshev, V.N. How selenium has altered our understanding of the genetic code. Mol. Cell. Biol. 2002, 22, 3565–3576. [Google Scholar] [CrossRef]
- Xu, X.M.; Mix, H.; Carlson, B.A.; Grabowski, P.J.; Gladyshev, V.N.; Berry, M.J.; Hatfield, D.L. Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery. J. Biol. Chem. 2005, 280, 41568–41575. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; Segovia-Cruz, J.A.; Flores-Aguilar, J.F.; Rodríguez-Serrano, G.M.; Salazar-Pereda, V.; Ramírez-Godínez, J.; Contreras-López, E.; Jaimez-Ordaz, J.; González-Olivares, L.G. Serine-enriched minimal medium enhances conversion of selenium into selenocysteine by Streptococcus thermophilus. J. Dairy Sci. 2019, 102, 6781–6789. [Google Scholar] [CrossRef]
- Turner, R.J.; Weiner, J.H.; Taylor, D.E. Selenium metabolism in Escherichia coli. Biometals 1998, 11, 223–227. [Google Scholar] [CrossRef]
- Mangiapane, E.; Lamberti, C.; Pessione, A.; Galano, E.; Amoresano, A.; Pessione, E. Selenium effects on the metabolism of a Se-metabolizing Lactobacillus reuteri: Analysis of envelope-enriched and extracellular proteomes. Mol. BioSyst. 2014, 10, 1272–1280. [Google Scholar] [CrossRef]
- Segura, A.; Bertoni, M.; Auffret, P.; Klopp, C.; Bouchez, O.; Genthon, C.; Durand, A.; Bertin, Y.; Forano, E. Transcriptomic analysis reveals specific metabolic pathways of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Genom. 2018, 19, 766. [Google Scholar] [CrossRef]
- Kieliszek, M.; Błażejak, S.; Bzducha-Wróbel, A.; Kot, A.M. Effect of selenium on growth and antioxidative system of yeast cells. Mol. Biol. Rep. 2019, 46, 1797–1808. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Wu, L.W.; Niu, J.J.; Zhao, X.L. Research progress of the composition and function of bacterial phosphotransferase system. Microbiol. China 2020, 47, 2266–2277. [Google Scholar]
- Caggianiello, G.; Kleerebezem, M.; Spano, G. Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 2016, 100, 3877–3886. [Google Scholar] [CrossRef]
- Dal-Bello, F.; Walter, J.; Hertel, C.; Hammes, W.P. In vitro study of prebiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst. Appl. Microbiol. 2001, 24, 232–237. [Google Scholar] [CrossRef]
- Nurlinawati; Vanoirbeek, K.; Aertsen, A.; Michiels, C.W. Role of 1-acyl-sn-glycerol-3-phosphate acyltransferase in psychrotrophy and stress tolerance of Serratia plymuthica RVH1. Res. Microbiol. 2015, 166, 28–37. [Google Scholar] [CrossRef]
- Zhai, Q.X.; Xiao, Y.; Zhao, J.X.; Tian, F.W.; Zhang, H.; Narbad, A.; Chen, W. Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Sci. Rep. 2017, 7, 1182. [Google Scholar] [CrossRef]
- Mok, W.K.; Tan, Y.X.; Lee, J.; Kim, J.J.; Chen, W.N. A metabolomic approach to understand the solid-state fermentation of okara using Bacillus subtilis WX-17 for enhanced nutritional profile. AMB Expr. 2019, 9, 60. [Google Scholar] [CrossRef]
- Martínez, F.G.; Moreno-Martin, G.; Mozzi, F.; Madrid, Y.; Pescuma, M. Selenium stress response of the fruit origin strain Fructobacillus tropaeoli CRL 2034. Appl. Microbiol. Biotechnol. 2023, 107, 1329–1339. [Google Scholar] [CrossRef]
Concentration of Selenium (µg/mL) | The Population of Bacterial Cells × 108 (cfu/mL) | |||||
---|---|---|---|---|---|---|
St | LB | WX | RS | FG | SS | |
0 | 3.18 ± 0.06 C | 1.69 ± 0.02 F | 1.89 ± 0.03 E | 3.07 ± 0.05 D | 3.55 ± 0.03 B | 3.74 ± 0.03 A |
50 | 3.48 ± 0.06 A ** | 1.93 ± 0.01 E ** | 1.74 ± 0.02 F ** | 2.63 ± 0.02 D ** | 2.98 ± 0.04 C ** | 3.20 ± 0.03 B ** |
Concentration of Selenium (µg/mL) | The Weight of Bacterial Cells (mg/mL) | |||||
---|---|---|---|---|---|---|
St | LB | WX | RS | FG | SS | |
0 | 0.89 ± 0.02 C | 0.42 ± 0.01 F | 0.48 ± 0.01 E | 0.84 ± 0.00 D | 1.00 ± 0.01 B | 1.04 ± 0.01 A |
50 | 0.96 ± 0.02 A * | 0.48 ± 0.01 E ** | 0.43 ± 0.00 F ** | 0.71 ± 0.01 D ** | 0.84 ± 0.02 C ** | 0.88 ± 0.01 B ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Ju, J.; Xie, H.; Qiao, F.; Luo, Q.; Zhou, L. Comparative Study on Growth and Metabolomic Profiles of Six Lactobacilli Strains by Sodium Selenite. Microorganisms 2024, 12, 1937. https://doi.org/10.3390/microorganisms12101937
Wang L, Ju J, Xie H, Qiao F, Luo Q, Zhou L. Comparative Study on Growth and Metabolomic Profiles of Six Lactobacilli Strains by Sodium Selenite. Microorganisms. 2024; 12(10):1937. https://doi.org/10.3390/microorganisms12101937
Chicago/Turabian StyleWang, Longrui, Jiasheng Ju, Huichun Xie, Feng Qiao, Qiaoyu Luo, and Lianyu Zhou. 2024. "Comparative Study on Growth and Metabolomic Profiles of Six Lactobacilli Strains by Sodium Selenite" Microorganisms 12, no. 10: 1937. https://doi.org/10.3390/microorganisms12101937