Seroprevalence and Risk Factors Associated with Chlamydia abortus Infection in Sheep and Goats in Eastern Saudi Arabia
Abstract
:1. Introduction
2. Results
2.1. Seroprevalence Animal- and Flock-Level
2.2. Risk Factor Analysis
2.3. Molecular Identification of C. abortus
3. Discussion
3.1. Seroprevalence of C. abortus
3.2. Risk Factors
3.3. Study Limitations
4. Materials and Methods
4.1. Study Area
4.2. Study Design
4.3. Sample and Data Collection
4.4. Serological Examination
4.5. Molecular Identification of C. abortus
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Everett, K.D. Chlamydia and Chlamydiales: More than meets the eye. Vet. Microbiol. 2000, 75, 109–126. [Google Scholar] [CrossRef]
- Essig, A.; Longbottom, D. Chlamydia abortus: New aspects of infectious abortion in sheep and potential risk for pregnant women. Curr. Clin. Microbiol. Rep. 2015, 2, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Longbottom, D.; Coulter, L. Animal chlamydioses and zoonotic implications. J. Comp. Pathol. 2003, 128, 217–244. [Google Scholar] [CrossRef] [PubMed]
- Lenzko, H.; Moog, U.; Henning, K.; Lederbach, R.; Diller, R.; Menge, C.; Sachse, K.; Sprague, L.D. High frequency of chlamydial co-infections in clinically healthy sheep flocks. BMC Vet. Res. 2011, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.-I.; Shieh, H.; Liao, Y.-K. Prevalence of Chlamydophila abortus infection in domesticated ruminants in Taiwan. J. Vet. Med. Sci. 2001, 63, 1215–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longbottom, D.; Livingstone, M.; Maley, S.; van der Zon, A.; Rocchi, M.; Wilson, K.; Wheelhouse, N.; Dagleish, M.; Aitchison, K.; Wattegedera, S. Intranasal infection with Chlamydia abortus induces dose-dependent latency and abortion in sheep. PLoS ONE 2013, 8, e57950. [Google Scholar] [CrossRef] [PubMed]
- Aitken, I.; Longbottom, D. Chlamydial abortion. Dis. Sheep 2007, 4, 105–112. [Google Scholar]
- Shewen, P.E. Chlamydial infection in animals: A review. Can. Vet. J. 1980, 21, 2. [Google Scholar]
- Deutz, A.; Fuchs, K.; Schuller, W.; Nowotny, N.; Auer, H.; Aspöck, H.; Stünzner, D.; Kerbl, U.; Klement, C.; Köfer, J. Seroepidemiological studies of zoonotic infections in hunters in southeastern Austria--prevalences, risk factors, and preventive methods. Berl. Munch. Tierarztl. Wochenschr. 2003, 116, 306–311. [Google Scholar]
- Pospischil, A.; Thoma, R.; Hilbe, M.; Grest, P. Abortion in woman caused by caprine Chlamydophila abortus (Chlamydia psittaci serovar 1). Swiss Med Wkly. 2002, 132, 64–66. [Google Scholar]
- Meijer, A.; Brandenburg, A.; De Vries, J.; Beentjes, J.; Roholl, P.; Dercksen, D. Chlamydophila abortus infection in a pregnant woman associated with indirect contact with infected goats. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Walder, G.; Hotzel, H.; Brezinka, C.; Gritsch, W.; Tauber, R.; Würzner, R.; Ploner, F. An unusual cause of sepsis during pregnancy: Recognizing infection with Chlamydophila abortus. Obstet. Gynecol. 2005, 106, 1215–1217. [Google Scholar] [CrossRef] [PubMed]
- Rohde, G.; Straube, E.; Essig, A.; Reinhold, P.; Sachse, K. Chlamydial zoonoses. Dtsch. Arztebl. Int. 2010, 107, 174. [Google Scholar] [CrossRef] [PubMed]
- Hireche, S.; Ababneh, M.M.K.; Bouaziz, O.; Boussena, S. Seroprevalence and molecular characterization of Chlamydia abortus in frozen fetal and placental tissues of aborting ewes in northeastern Algeria. Trop. Anim. Health Prod. 2016, 48, 255–262. [Google Scholar] [CrossRef]
- Mamlouk, A.; Guesmi, K.; Ouertani, I.; Kalthoum, S.; Selmi, R.; Aicha, E.B.; Mohamed, B.B.H.; Gharbi, R.; Lachtar, M.; Dhaouadi, A. Seroprevalence and associated risk factors of Chlamydia abortus infection in ewes in Tunisia. Comp. Immunol. Microbiol. Infect. Dis. 2020, 71, 101500. [Google Scholar] [CrossRef]
- Selim, A.; Manaa, E.A.; Waheed, R.M.; Alanazi, A.D. Seroprevalence, associated risk factors analysis and first molecular characterization of chlamydia abortus among Egyptian sheep. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101600. [Google Scholar] [CrossRef]
- Santos, C.S.; Piatti, R.M.; Azevedo, S.S.; Alves, C.J.; Higino, S.S.; Silva, M.L.; Brasil, A.W.; Gennari, S.M. Seroprevalence and risk factors associated with Chlamydophila abortus infection in dairy goats in the Northeast of Brazil. Pesqui. Veterinária Bras. 2012, 32, 1082–1086. [Google Scholar] [CrossRef] [Green Version]
- Leopoldo, T.B.; Pinheiro, R.R.; Alves, F.; Porfirio, K.d.P.; do Rêgo, W.; Diniz, B.; Cardoso, J.; Paula, N.d.O. Risk factors in the transmission and seroprevalence of Chlamydophila abortus infection in sheep and goats. Pesqui. Agropecuária Bras. 2016, 51, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Tejedor-Junco, M.T.; González-Martín, M.; Corbera, J.A.; Santana, Á.; Hernández, C.N.; Gutiérrez, C. Preliminary evidence of the seroprevalence and risk factors associated with Chlamydia abortus infection in goats on the Canary Islands, Spain. Trop. Anim. Health Prod. 2019, 51, 257–260. [Google Scholar] [CrossRef]
- Borujeni, M.P.; Bakhtiari, N.M.; Hajikolaei, M.H.; Mousavi, M. Chlamydia abortus infection in goats in the southwest of Iran. Rev. Méd. Vét. 2019, 170, 9–14. [Google Scholar]
- Benaissa, M.H.; Mimoune, N.; Youngs, C.R.; Kaidi, R.; Faye, B. First report of Chlamydophila abortus infection in the dromedary camel (Camelus dromedarius) population in eastern Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2020, 73, 101557. [Google Scholar] [CrossRef]
- Talafha, A.Q.; Ababneh, M.M.; Ababneh, M.M.; Al-Majali, A.M. Prevalence and risk factors associated with Chlamydophila abortus infection in dairy herds in Jordan. Trop. Anim. Health Prod. 2012, 44, 1841–1846. [Google Scholar] [CrossRef]
- Sachse, K.; Hotzel, H.; Slickers, P.; Ellinger, T.; Ehricht, R. DNA microarray-based detection and identification of Chlamydia and Chlamydophila spp. Mol. Cell. Probes 2005, 19, 41–50. [Google Scholar] [CrossRef]
- Rodolakis, A.; Mohamad, K.Y. Zoonotic potential of Chlamydophila. Vet. Microbiol. 2010, 140, 382–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travniček, M.; Kováčová, D.; Bhide, M.; Zubrický, P.; Čisláková, L. Detection of IgG antibodies against Chlamydophila abortus in sheep with reproductive disorders. Acta Vet. Brno 2003, 72, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Hussein, M.F.; Alshaikh, M.; Gad El-Rab, M.; Aljumaah, R.; Gar El Nabi, A.; Abdel Bagi, A. Serological prevalence of Q fever and chlamydiosis in camels in Saudi Arabia. J. Anim. Vet Adv. 2008, 7, 685–688. [Google Scholar]
- Al Khalifa, I.; Alshaikh, M.; Aljumaah, R.; Jarelnabi, A.; Hussein, M.F. Serological prevalence of abortifacient agents in female Mijaheem camels (Camelus dromedarius) in Saudi Arabia. J. Anim. Res. 2018, 8, 335–343. [Google Scholar] [CrossRef]
- Aljumaah, R.S.; Hussein, M.F. Serological prevalence of ovine and caprine chlamydophilosis in Riyadh region, Saudi Arabia. Afr. J. Microbiol. Res. 2012, 6, 2654–2658. [Google Scholar]
- Hu, S.-F.; Li, F.; Zheng, W.-B.; Liu, G.-H. Seroprevalence and risk factors of Chlamydia abortus infection in goats in Hunan province, subtropical China. Vector Borne Zoonotic Dis. 2018, 18, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Villagra-Blanco, R.; Dolz, G.; Montero-Caballero, D.; Romero-Zúñiga, J.J. Detection of antibodies against Chlamydophila abortus in Costa Rican sheep flocks. Open Vet. J. 2015, 5, 122–126. [Google Scholar]
- Qin, S.-Y.; Huang, S.-Y.; Yin, M.-Y.; Tan, Q.-D.; Liu, G.-X.; Zhou, D.-H.; Zhu, X.-Q.; Zhou, J.-Z.; Qian, A.-D. Seroprevalence and risk factors of Chlamydia abortus infection in free-ranging white yaks in China. BMC Vet. Res. 2015, 11, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilsmore, A.; Parsons, V.; Dawson, M. Experiments to demonstrate routes of transmission of ovine enzootic abortion. Br. Vet. J. 1984, 140, 380–391. [Google Scholar] [CrossRef]
- Fahad, O.A.; Salman, S.S. Survey for ovine and caprine chlamydiosis by ELISA in AL-Fallujah city/Iraq. J. Entomol. Zool. Stud. 2017, 5, 322–326. [Google Scholar]
- Zaher, H.A.; Swelum, A.A.-A.; Alsharifi, S.A.; Alkablawy, A.H.; Ismael, A.B. Seroprevalence of chlamydiosis in Abu Dhabi dromedary camel (Camelus dromedarius) and its association with hematobiochemical responses towards the infection. J. Adv. Vet. Anim. Res. 2017, 4, 175–180. [Google Scholar] [CrossRef]
- Salman, S.S.; Mahmood, A.K.; Mosa, S.T. Seroprevalence of brucellosis in sheep with or without chlamydiosis in Iraq. Online J. Vet. Res. 2018, 22, 615–618. [Google Scholar]
- Al-Qudah, K.; Sharif, L.; Raouf, R.; Hailat, N.; Al-Domy, F. Seroprevalence of antibodies to Chlamydophila abortus shown in Awassi sheep and local goats in Jordan. Vet. Med. UZPI 2004, 49, 460. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.-X.; Liang, Q.-L.; Hu, X.-H.; Li, Z.; Yang, J.-F.; Zou, F.-C.; Zhu, X.-Q. First report of chlamydia seroprevalence and risk factors in domestic black-boned sheep and goats in China. Front. Vet. Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Qin, S.-Y.; Yin, M.-Y.; Cong, W.; Zhou, D.-H.; Zhang, X.-X.; Zhao, Q.; Zhu, X.-Q.; Zhou, J.-Z.; Qian, A.-D. Seroprevalence and risk factors of Chlamydia abortus infection in Tibetan sheep in Gansu province, northwest China. Sci. World J. 2014, 2014, 193464. [Google Scholar] [CrossRef] [Green Version]
- Campos-Hernández, E.; Vázquez-Chagoyán, J.C.; Salem, A.Z.; Saltijeral-Oaxaca, J.A.; Escalante-Ochoa, C.; López-Heydeck, S.M.; de Oca-Jiménez, R.M. Prevalence and molecular identification of Chlamydia abortus in commercial dairy goat farms in a hot region in Mexico. Trop. Anim. Health Prod. 2014, 46, 919–924. [Google Scholar] [CrossRef]
- Esmaeili, H.; Bolourchi, M.; Mokhber-Dezfouli, M.R.; Teimourpour, A. Detection of Chlamydia abortus and risk factors for infection in small ruminants in Iran. Small Rumin. Res. 2021, 197, 106339. [Google Scholar] [CrossRef]
- Hireche, S.; Bouaziz, O.; Djenna, D.; Boussena, S.; Aimeur, R.; Kabouia, R.; Bererhi, E.H. Seroprevalence and risk factors associated with Chlamydophila spp. infection in ewes in the northeast of Algeria. Trop. Anim. Health Prod. 2014, 46, 467–473. [Google Scholar] [CrossRef]
- Esmaeili, H.; Bolourchi, M.; Mokhber-Dezfouli, M.R. Seroprevalence of Chlamydia abortus infection in sheep and goats in Iran. Iran. J. Vet. Med. 2015, 9, 73–77. [Google Scholar]
- Longbottom, D.; Fairley, S.; Chapman, S.; Psarrou, E.; Vretou, E.; Livingstone, M. Serological diagnosis of ovine enzootic abortion by enzyme-linked immunosorbent assay with a recombinant protein fragment of the polymorphic outer membrane protein POMP90 of Chlamydophila abortus. J. Clin. Microbiol. 2002, 40, 4235–4243. [Google Scholar] [CrossRef] [Green Version]
- McCauley, L.; Lancaster, M.; Butler, K.; Ainsworth, C. Serological analysis of Chlamydophila abortus in Australian sheep and implications for the rejection of breeder sheep for export. Aust. Vet. J. 2010, 88, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Binkin, N.; Sullivan, K.; Staehling, N.; Nieburg, P. Rapid nutrition surveys: How many clusters are enough? Disasters 1992, 16, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Livingstone, M.; Longbottom, D. Comparative evaluation of eight serological assays for diagnosing Chlamydophila abortus infection in sheep. Vet. Microbiol. 2009, 135, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Totaro, M.; Madio, A.; Tarsitano, E.; Fasanella, A.; Lucifora, G.; Buonavoglia, D. Detection of Chlamydophila abortus in sheep and goat flocks in southern Italy by PCR using four different primer sets. Vet. Res. Commun. 2005, 29, 107–115. [Google Scholar] [CrossRef]
- Thrusfield, M. Data collection and management. In Veterinary Epidemiology, 3rd ed.; Blackwell Science Ltd.: Oxford, UK, 2007; pp. 188–213. [Google Scholar]
- Stevenson, M.; Nunes, T.; Sanchez, J.; Thornton, R.; Reiczigel, J.; Robison-Cox, J.; Sebastiani, P. epiR: An R Package for the Analysis of Epidemiological Data. R Package Version 0.9–43. 2013. Available online: https://CRAN.R-project.org/package=epiR (accessed on 15 July 2020).
- Christensen, J.; Gardner, I.A. Herd-level interpretation of test results for epidemiologic studies of animal diseases. Prev. Vet. Med. 2000, 45, 83–106. [Google Scholar] [CrossRef]
- Mason, C.H.; Perreault, W.D. Collinearity, power, and interpretation of multiple regression analysis. J. Mark. Res. 1991, 28, 268–280. [Google Scholar] [CrossRef]
- Dohoo, I.R.; Martin, W.; Stryhn, H.E. Veterinary Epidemiologic Research; University of Prince Edward Island: Charlottetown, PE, Canada, 2003. [Google Scholar]
Factors | Frequency of Examined Sheep (%) | Prevalence of Seropositive Sheep (%) | OR (95% CI) 1 | P-Value |
---|---|---|---|---|
Flock Level | ||||
Flock size | ||||
Small (≤200) | 28.8 | 7.7 | 1.0 (ref.) | |
Large (>200) | 71.2 | 12.2 | 1.8 (0.9–3.4) | 0.075 |
Season | ||||
Summer | 18.7 | 6.5 | 1.0 (ref.) | 0.003 |
Winter | 41.4 | 15.0 | 2.7 (1.3–5.5) | 0.006 |
Spring | 23.3 | 11.3 | 1.8 (0.8–3.9) | 0.131 |
Autumn | 16.6 | 5.3 | 0.8 (0.3–2.1) | 0.710 |
Recent history of abortion | ||||
No | 85.6 | 6.9 | 1.0 (ref.) | |
Yes | 14.4 | 34.8 | 308.3 (91.0–1030.6) | 0.000 |
Introductions of new sheep to the flock | ||||
No | 61.4 | 7.1 | 1.0 (ref.) | |
Yes | 38.6 | 16.9 | 2.7 (1.8–4.2) | 0.000 |
Mixed breeding farm | ||||
No | 82.8 | 11.1 | 1.0 (ref.) | |
Yes | 17.2 | 10.1 | 1.2 (0.5–2.8) | 0.713 |
Farm hygiene | ||||
Bad | 85.9 | 12.1 | 1.0 (ref.) | |
Good | 14.1 | 3.3 | 0.3 (0.1–0.6) | 0.002 |
History of previous treatment | ||||
No | 85.5 | 10.0 | 1.0 (ref.) | |
Yes | 14.5 | 16.1 | 1.9 (1.3–2.9) | 0.001 |
Type of breeding system | ||||
Closed | 49.5 | 6.9 | 1.0 (ref.) | |
Open | 50.5 | 14.8 | 2.5 (1.5–4.0) | 0.000 |
Sheep exchange during breeding | ||||
No | 33.0 | 6.4 | 1.0 (ref.) | 0.007 |
Female out | 17.2 | 10.9 | 2.2 (1.0–5.0) | 0.055 |
Female in | 49.8 | 13.9 | 2.7 (1.4–5.0) | 0.002 |
Vaccine type | ||||
Clostridia (C) only | 14.0 | 8.3 | 1.0 (ref.) | 0.523 |
Pasteurella (P) only | 9.2 | 5.7 | 0.6 (0.2–2.4) | 0.494 |
C + P | 34.3 | 12.1 | 1.4 (0.5–3.6) | 0.500 |
C + P + PPR | 42.5 | 11.9 | 1.4 (0.6–3.4) | 0.501 |
Animal level | ||||
Age | ||||
<1.4 year | 26.1 | 7.2 | 1.0 (ref.) | 0.003 |
1.4–2.8 years | 51.0 | 13.4 | 2.0 (1.3–3.0) | 0.002 |
≥ 2.8 years | 22.9 | 9.7 | 1.3 (0.8–2.2) | 0.267 |
Sex | ||||
Male | 7.4 | 12.6 | 1.0 (ref.) | |
Female | 92.6 | 10.8 | 0.8 (0.5–1.5) | 0.506 |
Breed | ||||
Awassi (Naeimi) | 40.1 | 12.5 | 1.0 (ref.) | 0.352 |
Najdi | 26.3 | 9.1 | 0.7 (0.4–1.5) | 0.421 |
Sawakin | 10.5 | 6.2 | 0.5 (0.2–1.4) | 0.182 |
Mixed | 23.1 | 12.4 | 1.2 (0.6–2.7) | 0.598 |
Factors | Frequency of Examined Goats (%) | Prevalence of Seropositive Goats (%) | OR (95% CI) 1 | P-Value |
---|---|---|---|---|
Flock Level | ||||
Flock size | ||||
Small (≤200) | 29.8 | 6.7 | 1.0 (ref.) | |
Large (>200) | 70.2 | 11.9 | 2.0 (1.0–4.0) | 0.067 |
Season | ||||
Summer | 12.7 | 2.1 | 1.0 (ref.) | 0.038 |
Winter | 47.6 | 12.2 | 6.2 (1.7–22.4) | 0.005 |
Spring | 21.4 | 12.3 | 6.0 (1.6–23.1) | 0.009 |
Autumn | 18.3 | 9.0 | 4.5 (1.1–17.4) | 0.032 |
Recent history of abortion | ||||
No | 97.7 | 8.2 | 1.0 (ref.) | |
Yes | 2.3 | 100 | 644.7 | 0.969 |
Introductions of new goats to the flock | ||||
No | 80.7 | 8.5 | 1.0 (ref.) | |
Yes | 19.4 | 18.3 | 2.6 (1.4–5.0) | 0.004 |
Mixed breeding farm | ||||
No | 74.3 | 11.1 | 1.0 (ref.) | |
Yes | 25.7 | 8.1 | 0.8 (0.4–2.0) | 0.692 |
Farm hygiene | ||||
Bad | 69.9 | 12.9 | 1.0 (ref.) | |
Good | 30.2 | 4.5 | 0.3 (0.2–0.6) | 0.000 |
History of previous treatment | ||||
No | 97.2 | 10.5 | 1.0 (ref.) | |
Yes | 2.8 | 6.5 | 0.7 (0.1–4.1) | 0.654 |
Type of breeding system | ||||
Closed | 91.0 | 10.6 | 1.0 (ref.) | |
Open | 9.0 | 8.1 | 0.9 (0.2–3.4) | 0.855 |
Goat exchange during breeding | ||||
No | 38.3 | 4.8 | 1.0 (ref.) | |
Female out | 26.3 | 14.8 | 3.5 (2.0–6.3) | 0.000 |
Female in | 35.4 | 13.1 | 3.0 (1.7–5.3) | 0.000 |
Vaccine type | ||||
Clostridia (C) only | 12.1 | 3.0 | 1.0 (ref.) | 0.109 |
Pasteurella (P) only | 9.0 | 8.1 | 2.9 (0.6–13.1) | 0.175 |
C + P | 14.9 | 13.4 | 4.9 (1.3–18.4) | 0.017 |
C + P + PPR | 64.0 | 11.4 | 3.8 (1.2–12.3) | 0.028 |
Animal level | ||||
Age | ||||
≤2 year | 51.2 | 9.2 | 1.0 (ref.) | |
>2 year | 48.8 | 11.6 | 1.4 (0.9–2.0) | 0.121 |
Sex | ||||
Male | 16.0 | 10.3 | 1.0 (ref.) | |
Female | 84.0 | 10.8 | 1.0 (0.6–0.6) | 0.879 |
Breed | ||||
Aradi | 41.7 | 13.1 | 1.0 (ref.) | 0.255 |
Damascus | 27.3 | 10.0 | 0.7 (0.3–1.5) | 0.367 |
Mixed | 31.0 | 7.0 | 0.5 (0.2–1.1) | 0.105 |
Factors | OR (95% CI) 1 | P-Value |
---|---|---|
Sheep | ||
Flock size (continuous) | 0.99 (0.99–1.0) | 0.146 |
Introductions of new sheep to the flock | ||
No | 1.0 (ref.) | |
Yes | 2.6 (1.5–4.4) | 0.001 |
Type of breeding system | ||
Closed | 1.0 (ref.) | |
Open | 1.8 (1.0–3.4) | 0.056 |
Sheep exchange during breeding | ||
No | 1.0 (ref.) | 0.041 |
Female out | 2.2 (1.1–4.3) | 0.026 |
Female in | 1.9 (1.1–3.3) | 0.020 |
Age | ||
<1.4 years | 1.0 (ref.) | 0.004 |
1.4–2.8 years | 1.9 (1.3–2.9) | 0.022 |
≥ 2.8 years | 1.3 (0.8–2.1) | 0.313 |
Goats | ||
Flock size | ||
Small (≤200) | 1.0 (ref.) | |
Large (>200) | 0.8 (0.4–1.5) | 0.449 |
Introductions of new goats to the flock | ||
No | 1.0 (ref.) | |
Yes | 1.9 (1.2–3.0) | 0.004 |
Farm hygiene | ||
Bad | 1.0 (ref.) | |
Good | 0.3 (0.2–0.7) | 0.002 |
No. of Sheep | No. of Goats | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Flock ID | Tested | Sero-Positive | Recent Abortion | Vaginal, Aborted Tissue Samples | PCR Positive | Flock ID | Tested | Sero-Positive | Recent Abortion | Vaginal, Aborted Tissue Samples | PCR Positive |
1 | 31 | 1 | 0 | 0 | 0 | 1 | 31 | 2 | 0 | 0 | 0 |
2 | 37 | 2 | 1 | 1 | 1 | 2 | 38 | 1 | 0 | 0 | 0 |
3 | 36 | 1 | 0 | 0 | 0 | 3 | 51 | 2 | 0 | 0 | 0 |
4 | 42 | 2 | 2 | 2 | 2 | 4 | 58 | 1 | 1 | 1 | 1 |
5 | 50 | 2 | 2 | 2 | 1 | 5 | 72 | 7 | 2 | 1 | 1 |
6 | 58 | 1 | 0 | 0 | 0 | 6 | 78 | 9 | 3 | 2 | 2 |
7 | 75 | 7 | 75 | 3 | 2 | 7 | 82 | 2 | 1 | 1 | 1 |
8 | 83 | 10 | 5 | 3 | 2 | 8 | 89 | 5 | 1 | 1 | 1 |
9 | 82 | 12 | 7 | 4 | 4 | 9 | 92 | 15 | 3 | 2 | 2 |
10 | 80 | 3 | 0 | 0 | 0 | 10 | 95 | 10 | 2 | 1 | 1 |
11 | 85 | 4 | 1 | 1 | 1 | 11 | 99 | 8 | 1 | 1 | 1 |
12 | 91 | 10 | 2 | 2 | 2 | 12 | 103 | 18 | 3 | 1 | 1 |
13 | 91 | 3 | 1 | 1 | 1 | 13 | 103 | 13 | 4 | 2 | 2 |
14 | 99 | 19 | 9 | 4 | 4 | 14 | 110 | 21 | 5 | 2 | 2 |
15 | 100 | 11 | 5 | 3 | 3 | ||||||
16 | 100 | 8 | 99 | 3 | 3 | ||||||
17 | 113 | 25 | 10 | 6 | 6 | ||||||
18 | 113 | 9 | 3 | 1 | 1 | ||||||
19 | 115 | 14 | 8 | 5 | 5 | ||||||
20 | 116 | 16 | 9 | 4 | 4 | ||||||
21 | 120 | 27 | 8 | 3 | 3 | ||||||
Total | 1717 | 187 | 247 | 48 | 45 | Total | 1101 | 114 | 26 | 15 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayez, M.; Elmoslemany, A.; Alorabi, M.; Alkafafy, M.; Qasim, I.; Al-Marri, T.; Elsohaby, I. Seroprevalence and Risk Factors Associated with Chlamydia abortus Infection in Sheep and Goats in Eastern Saudi Arabia. Pathogens 2021, 10, 489. https://doi.org/10.3390/pathogens10040489
Fayez M, Elmoslemany A, Alorabi M, Alkafafy M, Qasim I, Al-Marri T, Elsohaby I. Seroprevalence and Risk Factors Associated with Chlamydia abortus Infection in Sheep and Goats in Eastern Saudi Arabia. Pathogens. 2021; 10(4):489. https://doi.org/10.3390/pathogens10040489
Chicago/Turabian StyleFayez, Mahmoud, Ahmed Elmoslemany, Mohammed Alorabi, Mohamed Alkafafy, Ibrahim Qasim, Theeb Al-Marri, and Ibrahim Elsohaby. 2021. "Seroprevalence and Risk Factors Associated with Chlamydia abortus Infection in Sheep and Goats in Eastern Saudi Arabia" Pathogens 10, no. 4: 489. https://doi.org/10.3390/pathogens10040489