In Situ Microstructural Evolution and Precipitate Analysis of High-Nickel Shipbuilding Steel Using High-Temperature Confocal Laser-Scanning Microscopy
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. High-Temperature In Situ Equipment
2.3. In Situ Observation Samples
3. Results and Discussion
3.1. In Situ Observation of Microstructural Transformation
3.2. SEM Analysis of Precipitates
3.3. Determination of Precipitate Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okuda, K.; Yamamitsu, K.; Xu, X.; Miyamoto, G. Change in NbC Precipitates during Cold Rolling of Nb-added IF Steel Sheet. Tetsu Hagane 2023, 109, 323–332. [Google Scholar] [CrossRef]
- Zhao, B.; Ai, F.; Yuan, Q.; Wu, H.; Cheng, J.; Wang, S.; Xie, D. Effect of Normalizing on Impact and Corrosion Resistance of Low-temperature Service Seamless Steel Pipe. J. Phys. Conf. Ser. 2023, 2463, 012011. [Google Scholar] [CrossRef]
- Huang, S.; Li, C.; Li, Z.; Zhuang, C.; Zeng, Z.; Wang, J. Effect of Thermal Simulation Process on Microstructure of Seismic Steel Bars. Materials 2022, 15, 3438. [Google Scholar] [CrossRef]
- Isobe, K.; Kumagai, Y.; Satou, T. Effects of Cooling Conditions and γ Grain Size on Each Behavior of Transformations, 3-Dimensional Thermal Deformation and Stress Generation during Immersion Cooling of Steel Bloom. ISIJ Int. 2023, 63, 919–929. [Google Scholar] [CrossRef]
- Napal, U.G.; Segarra, M.A.; Lazcano, B.E.; Sivo, A. Thermal Mass Effect on the Solution Cooling Rate and on HIPped Astroloy Component Properties. Materials 2022, 15, 1434. [Google Scholar] [CrossRef]
- Yan, M.; Sun, J.; Huang, H.; Chen, L.; Dong, K.; Chen, Z. Effect of hot rolling and cooling process on microstructure and properties of 2205/Q235 clad plate. J. Iron Steel Res. Int. 2018, 25, 1113–1122. [Google Scholar] [CrossRef]
- Kuziak, R.; Kania, Z.; Pidvysots, V.; Roelofs, H.; Pernach, M.; Pietrzyk, M. Through Process Modelling of Rolling and Controlled Cooling of TRIP Assisted Bainitic Steel Rods and Prediction of the Retained Austenite in Products. Mater. Sci. Forum 2017, 892, 23–33. [Google Scholar] [CrossRef]
- Liu, G.; Liu, J.; Zhang, J.; Zhang, M.; Feng, Y. Microstructure Evolution and Mechanical Properties of Medium Carbon Martensitic Steel during Warm Rolling and Annealing Process. Materials 2021, 14, 6900. [Google Scholar] [CrossRef]
- Li, X.; Zhou, X.; Jiang, Q.; Liu, Z. The Prediction of the Mechanical Properties for Hot-Rolled Nb Micro-Alloyed Dual-Phase Steel Based on Microstructure Characteristics. JOM 2023, 75, 2225–2234. [Google Scholar] [CrossRef]
- Dige, I.; Nilsson, H.; Kilian, M.; Nyvad, B. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J. Oral Sci. 2010, 115, 459–467. [Google Scholar] [CrossRef]
- Reid, M.; Phelan, D.; Dippenaar, R. Concentric Solidification for High Temperature Laser Scanning Confocal Microscopy. ISIJ Int. 2004, 44, 565–572. [Google Scholar] [CrossRef]
- Griesser, S.; Dippenaar, R. Enhanced Concentric Solidification Technique for High-Temperature Laser-Scanning Confocal Microscopy. ISIJ Int. 2014, 54, 533–535. [Google Scholar] [CrossRef]
- Chen, R.; Zheng, Z.; Li, N.; Li, J.; Feng, F. In-situ investigation of phase transformation behaviors of 300M steel in continuous cooling process. Mater. Charact. 2018, 144, 400–410. [Google Scholar] [CrossRef]
- Klein, T.; Niknafs, S.; Dippenaar, R.; Clemens, H.; Mayer, S. High Temperature Laser-Scanning Confocal Microscopy for the in-situ Investigation of Grain Growth and Phase Transformations in Intermetallic γ-TiAl based Alloys. Prakt. Metallogr. 2015, 52, 259–269. [Google Scholar] [CrossRef]
- Chikama, H.; Shibata, H.; Emi, T.; Suzuki, M. “In-situ” Real Time Observation of Planar to Cellular and Cellular to Dendritic Transition of Crystals Growing in Fe–C Alloy Melts. Mater. Trans. 2007, 37, 620–626. [Google Scholar] [CrossRef]
- Shibata, H.; Arai, Y.; Suzuki, M.; Emi, T. Kinetics of peritectic reaction and transformation in Fe-C alloys. Metall. Mater. Trans. B 2000, 31, 981–991. [Google Scholar] [CrossRef]
- Yin, H.; Emi, T.; Shibata, H. Morphological instability of δ-ferrite/γ-austenite interphase boundary in low carbon steels. Acta Mater. 1999, 47, 1523–1535. [Google Scholar] [CrossRef]
- Tian, J.; Xu, G.; Jiang, Z.; Hu, H.; Yuan, Q.; Wan, X. In-Situ Observation of Martensitic Transformation in a Fe-C-Mn-Si Bainitic Steel During Austempering. Met. Mater. Int. 2020, 26, 961–972. [Google Scholar] [CrossRef]
- Cejka, J.; Michelic, S.K. In-Situ Observation of Steel/Slag/Inclusion Interaction by Means of High-Temperature Confocal Scanning Laser Microscopy. Metals 2023, 13, 686. [Google Scholar] [CrossRef]
- Mu, W.; Hedström, P.; Shibata, H.; Jönsson, P.G.; Nakajima, K. High-Temperature Confocal Laser Scanning Microscopy Studies of Ferrite Formation in Inclusion-Engineered Steels: A Review. JOM 2018, 70, 2283–2295. [Google Scholar] [CrossRef]
- Ryttberg, K.; Wedel, M.K.; Dahlman, P.; Nyborg, L. Microstructural evolution during fracture induced by high strain rate deformation of 100Cr6 steel. J. Mater. Process. Technol. 2009, 209, 3325–3334. [Google Scholar] [CrossRef]
- Kozmel, T.; Tin, S. Effects of Carbides on the Microstructural Evolution in Sub-micron Grain 9310 Steel During Isothermal Heat Treatment. Metall. Mater. Trans. A 2015, 46, 3208–3219. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.; Chen, L.; Zhu, Z.; Qiu, F.; Chang, F.; Dong, B.; Barber, G.C. Insights into the microstructure evolution and wear resistance of Nano-TiC particles reinforced High-Cr hot work die steel. J. Mater. Res. Technol. 2024, 30, 8371–8381. [Google Scholar] [CrossRef]
- Benarrache, S.; Benchatti, T.; Benhorma, H. Formation and Dissolution of Carbides and Nitrides in the Weld Seam of X70 Steel by the Effects of Heat Treatments. Ann. Chim. Sci. Matériaux 2019, 43, 11–16. [Google Scholar] [CrossRef]
- Sai Gautam, G.; Hari Kumar, K.C. Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: A first principles study. J. Alloys Compd. 2014, 587, 380–386. [Google Scholar] [CrossRef]
- Gorbachev, I.I.; Popov, V.V. Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: IV. Solubility of carbides, nitrides, and carbonitrides in the Fe-Nb-C, Fe-Nb-N, and Fe-Nb-C-N systems. Phys. Met. Metallogr. 2010, 110, 52–61. [Google Scholar] [CrossRef]
- Bowen, A.W.; Leak, G.M. Solute diffusion in alpha- and gamma-iron. Metall. Trans. 1970, 1, 1695–1700. [Google Scholar] [CrossRef]
- Sun, L.; Ji, X.; Zhao, L.; Zhai, W.; Xu, L.; Dong, H.; Liu, Y.; Peng, J. First Principles Investigation of Binary Chromium Carbides Cr7C3, Cr3C2 and Cr23C6: Electronic Structures, Mechanical Properties and Thermodynamic Properties under Pressure. Materials 2022, 15, 558. [Google Scholar] [CrossRef]
Element | C | Ni | Si | Mn | Cr | V | Fe |
---|---|---|---|---|---|---|---|
Wt pct | 0.1 | 4.45 | 0.25 | 0.54 | 0.55 | 0.06 | Rest (up to 100%) |
Position | O | Si | V | Cr | Mn | Fe | Ni |
---|---|---|---|---|---|---|---|
1 | 10.65 | 1.61 | 6.46 | 4.13 | 73.06 | 4.09 | |
2 | 18.78 | 0.46 | 1.11 | 6.13 | 5.57 | 64.31 | 3.64 |
3 | 22.12 | 2.13 | 10.17 | 62.80 | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.; Zhu, S.; Li, Z.; Wang, Q. In Situ Microstructural Evolution and Precipitate Analysis of High-Nickel Shipbuilding Steel Using High-Temperature Confocal Laser-Scanning Microscopy. Metals 2024, 14, 1085. https://doi.org/10.3390/met14091085
Sun G, Zhu S, Li Z, Wang Q. In Situ Microstructural Evolution and Precipitate Analysis of High-Nickel Shipbuilding Steel Using High-Temperature Confocal Laser-Scanning Microscopy. Metals. 2024; 14(9):1085. https://doi.org/10.3390/met14091085
Chicago/Turabian StyleSun, Guojin, Shengzhi Zhu, Zhenggui Li, and Qi Wang. 2024. "In Situ Microstructural Evolution and Precipitate Analysis of High-Nickel Shipbuilding Steel Using High-Temperature Confocal Laser-Scanning Microscopy" Metals 14, no. 9: 1085. https://doi.org/10.3390/met14091085