Evidence of Incomplete Feeding Behaviors among South Carolina Tick Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tick Collection and Processing
2.2. Blood Meal Analysis
2.3. Pathogen Testing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Target Species | Gene | Sequence | Reference |
---|---|---|---|
Pathogen | |||
Panola Mountain Ehrlichia | gltA | Forward TGTCATTTCCACAGCATTCTCATC | [65] |
Reverse ATTAGCGCAATCATACTTGCAA | |||
Probe TGCCTTAGCTGCACATTATTGTGAT | |||
Ehrlichia ewingii | 16S | Forward GCGGCAAGCCTAACACATG | [65] |
Reverse CCCGTCTGCCACTAACAACTATC | |||
Probe TCGAACGAACAATTCCTAAATAGTCTCTGACTATT | |||
Ehrlichia chaffeensis | 16S | Forward GCGGCAAGCCTAACACATG | [65] |
Reverse CCCGTCTGCCACTAACAATTATT | |||
Probe AGTCGAACGGACAATTGCTTATAACCTTTTGGT | |||
Rickettsia species | 23S rRNA | Forward AGCTTGCTTTTGGATCATTTGG | [66] |
Reverse TTCCTTGCCTTTTCATACATCTAGT | |||
Probe CCTGCTTCTATTTGTCTTGCAGTAACACGCCA | |||
Rickettsia parkeri | ompB | Forward CAAATGTTGCAGTTCCTCTAAA | [67] |
Reverse AAA ACA AAC CGT TAA AAC TAC CG | |||
Probe CGCGAAATTAATACCCTTATGAGCAGCAGTCGCG | |||
Rickettsia rickettsii | Hypothetical Protein (HP) | Forward AAATCAACGGAAGAGCAAAAC | [66] |
Reverse CCCTCCACTACCTGCATCAT | |||
Probe TCCTCTCCAATCAGCGATTC | |||
Rickettsia amblyommatis | ompB | Forward GGTGCTGCGGCTTCTACATTAG | [65] |
Reverse CTGAAACTTGAATAAATCCATTAGTAACAT | |||
Probe TCCTCTTACACTTGGACAGAATGCT | |||
Borrelia burgdorferi | fliD | Forward TGG TGA CAG AGT GTA TGA TAA TGG AA | [68] |
Reverse ACT CCT CCG GAA GCC ACA A | |||
Probe TGC TAA AAT GCT AGG AGA TTG TCT GTC GCC | |||
Anaplasma phagocytophilum | P44 | Forward ATG GAA GGT AGT GTT GGT TAT GGT ATT | [69] |
Reverse TTG GTC TTG AAG CGC TCG TA | |||
Probe TGG TGC CAG GGT TGA GCT TGA GAT TG | |||
Theileria orientalis | MPSP | Forward GCA AAC AAG GAT TTG CAC GC | [70] |
Reverse TGT GAG ACT CAA TGC GCC TAG A | |||
Probe TCG ACA AGT TCT CAC CAC |
References
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; et al. Vital Signs: Trends in reported vectorborne disease cases—United States and territories, 2004–2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Prevention, C.f.D.C.a. A National Public Health Framework for the Prevention and Control of Vector-Borne Diseases in Humans; Centers for Disease Control and Prevention and Prevention National Center for Emerging and Zoonotic Infectious Disease: Atlanta, Georgia, 2020. [Google Scholar]
- Prevention, C.f.D.C.a. Understanding Lyme and Other Tickborne Diseases; 2022. Available online: https://www.cdc.gov/ticks/communication-resources/press-kit.html (accessed on 12 February 2024).
- Bouchard, C.; Dibernardo, A.; Koffi, J.; Wood, H.; Leighton, P.; Lindsay, L. Climate change and infectious diseases: The challenges: N increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep. 2019, 45, 83. [Google Scholar] [CrossRef] [PubMed]
- PPrevention, C.f.D.C.a. Tick ID. Tickborne Diseases of the United States. 2022. Available online: https://www.cdc.gov/ticks/tickbornediseases/TickborneDiseases-P.pdf (accessed on 13 February 2024).
- Sonenshine, D.E. Range Expansion of Tick Disease Vectors in North America: Implications for Spread of Tick-Borne Disease. Int. J. Environ. Res. Public Health 2018, 15, 478. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Eisen, L. The Blacklegged Tick, Ixodes scapularis: An Increasing Public Health Concern. Trends Parasitol. 2018, 34, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Phillips, V.C.; Zieman, E.A.; Kim, C.H.; Stone, C.M.; Tuten, H.C.; Jiménez, F.A. Documentation of the Expansion of the Gulf Coast Tick (Amblyomma maculatum) and Rickettsia parkeri: First Report in Illinois. J. Parasitol. 2020, 106, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Prevention, C.f.D.C.a. How Ticks Spread Disease; 2020. Available online: https://www.cdc.gov/ticks/about/tick-lifecycles.html?CDC_AAref_Val=https://www.cdc.gov/ticks/life_cycle_and_hosts.html (accessed on 12 February 2024).
- Concern, C.f.D.C.a.P.D.-L.I.o.P.o.P.H. Ticks; 2017. Available online: https://www.cdc.gov/dpdx/ticks/index.html (accessed on 13 February 2024).
- Tahir, D.; Meyer, L.; Fourie, J.; Jongejan, F.; Mather, T.; Choumet, V.; Blagburn, B.; Straubinger, R.K.; Varloud, M. Interrupted Blood Feeding in Ticks: Causes and Consequences. Microorganisms 2020, 8, 910. [Google Scholar] [CrossRef] [PubMed]
- Apanaskevich, D.A.; Oliver, J.H., Jr. Biology of Ticks, 2nd ed.; Sonenshine, D.E., Roe, R.M., Eds.; Oxford University Press: New York, NY, USA, 2014; Volume 1. [Google Scholar]
- Keirans, J.E.; Litwak, T.R. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J. Med. Entomol. 1989, 26, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Nadolny, R.M.; Toliver, M.; Gaff, H.D.; Snodgrass, J.G.; Robbins, R.G. Focus Stacking Images of Morphological Character States for Differentiating the Adults of Ixodes affinis and Ixodes scapularis (Acari: Ixodidae) in Areas of Sympatry. J. Med. Entomol. 2021, 58, 1941–1947. [Google Scholar] [CrossRef]
- Egizi, A.M.; Robbins, R.G.; Beati, L.; Nava, S.; Vans, C.R.; Occi, J.L.; Fonseca, D.M. A pictorial key to differentiate the recently detected exotic Haemaphysalislongicornis Neumann, 1901 (Acari, Ixodidae) from native congeners in North America. Zookeys 2019, 818, 117–128. [Google Scholar] [CrossRef]
- Flynn, P.C.; Kaufman, W.R. Female ixodid ticks grow endocuticle during the rapid phase of engorgement. Exp. Appl. Acarol. 2011, 53, 167–178. [Google Scholar] [CrossRef]
- Island, T.U.o.R. American Dog Tick. TickEncounter 2022. Available online: https://web.uri.edu/tickencounter/species/dog-tick/#:~:text=Male%20ticks%20blood%20feed%20briefly,or%20more%20to%20completely%20engorge (accessed on 13 February 2024).
- Dye-Braumuller, K.C.; Gual-Gonzalez, L.; Abiodun, T.; Rustin, L.P.; Evans, C.L.; Meyer, M.M.; Zellars, K.; Neault, M.J.; Nolan, M.S. Invasive Haemaphysalis longicornis (Acari: Ixodidae) investigation in South Carolina: New records of establishment, pathogen prevalence, and blood meal analyses. J. Med. Entomol. 2023, 60, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Morán Cadenas, F.; Rais, O.; Humair, P.F.; Douet, V.; Moret, J.; Gern, L. Identification of host bloodmeal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland). J. Med. Entomol. 2007, 44, 1109–1117. [Google Scholar] [CrossRef]
- Allan, B.F.; Goessling, L.S.; Storch, G.A.; Thach, R.E. Blood Meal Analysis to Identify Reservoir Hosts for Amblyomma americanum Ticks. Emerg. Infect. Dis. 2010, 16, 433. [Google Scholar] [CrossRef] [PubMed]
- Price, K.J.; Witmier, B.J.; Eckert, R.A.; Boyer, C.N. Recovery of Partially Engorged Haemaphysalis longicornis (Acari: Ixodidae) Ticks from Active Surveillance. J. Med. Entomol. 2022, 59, 1842–1846. [Google Scholar] [CrossRef] [PubMed]
- Muriu, S.M.; Muturi, E.J.; Shililu, J.I.; Mbogo, C.M.; Mwangangi, J.M.; Jacob, B.G.; Irungu, L.W.; Mukabana, R.W.; Githure, J.I.; Novak, R.J. Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malar. J. 2008, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Muturi, E.J.; Muriu, S.; Shililu, J.; Mwangangi, J.M.; Jacob, B.G.; Mbogo, C.; Githure, J.; Novak, R.J. Blood-feeding patterns of Culex quinquefasciatus and other culicines and implications for disease transmission in Mwea rice scheme, Kenya. Parasitol. Res. 2008, 102, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, N.; Samuel, P.P.; Hiriyan, J.; Rajendran, R.; Dash, A. Observations on the multiple feeding behavior of Culex tritaeniorhynchus (Diptera: Culicidae), the vector of Japanese encephalitis in Kerala in southern India. Am. J. Trop. Med. Hyg. 2005, 72, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Keven, J.B.; Artzberger, G.; Gillies, M.L.; Mbewe, R.B.; Walker, E.D. Probe-based multiplex qPCR identifies blood-meal hosts in Anopheles mosquitoes from Papua New Guinea. Parasites Vectors 2020, 13, 111. [Google Scholar] [CrossRef]
- Lifson, A.R. Mosquitoes, models, and dengue. Lancet 1996, 347, 1201–1202. [Google Scholar] [CrossRef]
- Boreham, P.F.; Garrett-Jones, C. Prevalence of mixed blood meals and double feeding in a malaria vector (Anopheles sacharovi Favre). Bull. World Health Organ. 1973, 48, 605–614. [Google Scholar]
- Ponlawat, A.; Harrington, L.C. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 2005, 42, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Remadi, L.; Chargui, N.; Jiménez, M.; Molina, R.; Haouas, N.; González, E.; Chaabane-Banaouas, R.; Ben Salah, E.; Haddaji, M.; Chaabouni, Y.; et al. Molecular detection and identification of Leishmania DNA and blood meal analysis in Phlebotomus (Larroussius) species. PLoS Negl. Trop. Dis. 2020, 14, e0008077. [Google Scholar] [CrossRef] [PubMed]
- González, E.; Gállego, M.; Molina, R.; Abras, A.; Alcover, M.M.; Ballart, C.; Fernández, A.; Jiménez, M. Identification of blood meals in field captured sand flies by a PCR-RFLP approach based on cytochrome b gene. Acta Trop. 2015, 152, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Maleki-Ravasan, N.; Oshaghi, M.; Javadian, E.; Rassi, Y.; Sadraei, J.; Mohtarami, F. Blood Meal Identification in Field-Captured Sand flies: Comparison of PCR-RFLP and ELISA Assays. Iran. J. Arthropod Borne Dis. 2009, 3, 8–18. [Google Scholar] [PubMed]
- Patnaude, M.R.; Mather, T.N. Blacklegged Tick or Deer Tick. Featured Creatures 2000 April 2021. Available online: https://entnemdept.ufl.edu/creatures/urban/medical/deer_tick.htm#syn (accessed on 11 February 2024).
- Clark, K.L.; Oliver, J.H., Jr.; McKechnie, D.B.; Williams, D.C. Distribution, abundance, and seasonal activities of ticks collected from rodents and vegetation in South Carolina. J. Vector Ecol. 1998, 23, 89–105. [Google Scholar] [PubMed]
- Newhouse, V.F. Variations in Population Density, Movement, and Rickettsial Infection Rates in a Local Population of Dermacentor variabilis (Acarina: Ixodidae) Ticks in the Piedmont of Georgia 1. Environ. Entomol. 1983, 12, 1737–1746. [Google Scholar] [CrossRef]
- Burg, J.G. Seasonal activity and spatial distribution of host-seeking adults of the tick Dermacentor variabilis. Med. Vet. Entomol. 2002, 15, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Spending, U. Advanced Search. Available online: https://www.usaspending.gov/ (accessed on 13 February 2024).
- Xu, G.; Wielstra, B.; Rich, S.M. Northern and southern blacklegged (deer) ticks are genetically distinct with different histories and Lyme spirochete infection rates. Sci. Rep. 2020, 10, 10289. [Google Scholar] [CrossRef]
- Monzón, J.D.; Atkinson, E.G.; Henn, B.M.; Benach, J.L. Population and evolutionary genomics of Amblyomma americanum, an expanding arthropod disease vector. Genome Biol. Evol. 2016, 8, 1351–1360. [Google Scholar] [CrossRef]
- Felz, M.W.; Durden, L.A. Attachment Sites of Four Tick Species (Acari: Ixodidae) Parasitizing Humans in Georgia and South Carolina. J. Med. Entomol. 1999, 36, 361–364. [Google Scholar] [CrossRef]
- Felz, M.W.; Durden, L.A.; Oliver, J.H., Jr. Ticks parasitizing humans in Georgia and South Carolina. J. Parasitol. 1996, 82, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Piesman, J. Experimental acquisition of the Lyme disease spirochete, Borrelia burgdorferi, by larval Ixodes dammini (Acari: Ixodidae) during partial blood meals. J. Med. Entomol. 1991, 28, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.M.; Spielman, A. Accelerated transmission of Lyme disease spirochetes by partially fed vector ticks. J. Clin. Microbiol. 1993, 31, 2878–2881. [Google Scholar] [CrossRef] [PubMed]
- Reese, S.M.; Dietrich, G.; Dolan, M.C.; Sheldon, S.W.; Piesman, J.; Petersen, J.M.; Eisen, R.J. Transmission dynamics of Francisella tularensis subspecies and clades by nymphal Dermacentor variabilis (Acari: Ixodidae). Am. J. Trop. Med. Hyg. 2010, 83, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, K.R.; Sonenshine, D.E.; Ceraul, S.M.; Azad, A.F. Infection and transovarial transmission of rickettsiae in Dermacentor variabilis ticks acquired by artificial feeding. Vector Borne Zoonotic Dis. 2001, 1, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Varloud, M.; Liebenberg, J.; Fourie, J. Early Babesia canis transmission in dogs within 24 h and 8 h of infestation with infected pre-activated male Dermacentor reticulatus ticks. Parasites Vectors 2018, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Lysyk, T.J. Movement of Male Dermacentor andersoni (Acari: Ixodidae) Among Cattle. J. Med. Entomol. 2013, 50, 977–985. [Google Scholar] [CrossRef]
- Buczek, A.; Zając, Z.; Woźniak, A.; Kulina, D.; Bartosik, K. Locomotor activity of adult Dermacentor reticulatus ticks (Ixodida: Ixodidae) in natural conditions. Ann. Agric. Enviorn. Med. 2017, 24, 271–275. [Google Scholar] [CrossRef]
- Platt, K.B.; Linthicum, K.J.; Myint, K.; Innis, B.L.; Lerdthusnee, K.; Vaughn, D.W. Impact of dengue virus infection on feeding behavior of Aedes aegypti. Am. J. Trop. Med. Hyg. 1997, 57, 119–125. [Google Scholar] [CrossRef]
- Killick-Kendrick, R.; Leaney, A.; Ready, P.; Molyneux, D. Leishmania in phlebotomid sandflies-IV. The transmission of Leishmania mexicana amazonensis to hamsters by the bite of experimentally infected Lutzomyia longipalpis. Proc. R. Soc. London. Ser. B. Biol. Sci. 1977, 196, 105–115. [Google Scholar]
- Botto-Mahan, C.; Cattan, P.E.; Medel, R. Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Trop. 2006, 98, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Grimstad, P.R.; Ross, Q.E.; Craig, G.B., Jr. Aedes Triseriatus (Diptera: Culicidae) and La Crosse Virus: II. Modification of mosquito feeding behavior by virus infection. J. Med. Entomol. 1980, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bacot, A.W.; Martin, C.J. LXVII. Observations on the mechanism of the transmission of plague by fleas. J. Hyg. 1914, 13, 423. [Google Scholar] [PubMed]
- Javed, N.; Bhatti, A.; Paradkar, P.N. Advances in Understanding Vector Behavioural Traits after Infection. Pathogens 2021, 10, 1376. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.R. Interrupted feeding of blood-sucking insects: Causes and effects. Parasitol. Today 1990, 6, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Beatty, N.L.; Behrens-Bradley, N.; Love, M.; McCants, F.; Smith, S.; Schmidt, J.O.; Hamer, S.A.; Dorn, P.L.; Ahmad, N.; Klotz, S.A. Rapid detection of human blood in triatomines (kissing bugs) utilizing a lateral flow immunochromatographic assay—A pilot study. Mem. Inst. Oswaldo Cruz 2019, 114, e190047. [Google Scholar] [CrossRef] [PubMed]
- Borland, E.M.; Kading, R.C. Modernizing the Toolkit for Arthropod Bloodmeal Identification. Insects 2021, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Sales, K.G.d.S.; Miranda, D.E.d.O.; Paiva, M.H.S.; Figueredo, L.A.; Otranto, D.; Dantas-Torres, F. Fast multiplex real-time PCR assay for simultaneous detection of dog and human blood and Leishmania parasites in sand flies. Parasites Vectors 2020, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- MR, V.D.S.; Gu, X.; Ward, M.P.; Kirkland, P.D. Development and evaluation of real-time PCR assays for bloodmeal identification in Culicoides midges. Med. Vet. Entomol. 2016, 30, 155–165. [Google Scholar] [CrossRef]
- Koch, H.G. Suitability of white-tailed deer, cattle, and goats as hosts for the lone star tick, Amblyomma americanum (Acari: Ixodidae). J. Kans. Entomol. Soc. 1988, 61, 251–257. [Google Scholar]
- Lefcort, H.; Durden, L. The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology 1996, 113, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Faulde, M.K.; Robbins, R.G. Tick infestation risk and Borrelia burgdorferi s.l. infection-induced increase in host-finding efficacy of female Ixodes ricinus under natural conditions. Exp. Appl. Acarol. 2008, 44, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Cruz, A.; Estrada-Peña, A.; Rego, R.O.; De la Fuente, J. Tick-pathogen ensembles: Do molecular interactions lead ecological innovation? Front. Cell. Infect. Microbiol. 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Cruz, A.; Alberdi, P.; Ayllón, N.; Valdés, J.J.; Pierce, R.; Villar, M.; De la Fuente, J. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics 2016, 11, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Cruz, A.; Alberdi, P.; Valdes, J.J.; Villar, M.; De la Fuente, J. Anaplasma phagocytophilum infection subverts carbohydrate metabolic pathways in the tick vector, Ixodes scapularis. Front. Cell. Infect. Microbiol. 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Gaines, D.N.; Operario, D.J.; Stroup, S.; Stromdahl, E.; Wright, C.; Gaff, H.; Broyhill, J.; Smith, J.; Norris, D.E.; Henning, T.; et al. Ehrlichia and spotted fever group Rickettsiae surveillance in Amblyomma americanum in Virginia through use of a novel six-plex real-time PCR assay. Vector Borne Zoonotic Dis. 2014, 14, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Kato, C.Y.; Chung, I.H.; Robinson, L.K.; Austin, A.L.; Dasch, G.A.; Massung, R.F. Assessment of real-time PCR assay for detection of Rickettsia spp. and Rickettsia rickettsii in banked clinical samples. J. Clin. Microbiol. 2013, 51, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Stromdahl, E.Y.; Richards, A.L. Detection of Rickettsia parkeri and Candidatus Rickettsia andeanae in Amblyomma maculatum Gulf Coast ticks collected from humans in the United States. Vector Borne Zoonotic Dis. 2012, 12, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.B.; Maes, S.E.; Hojgaard, A.; Fleshman, A.C.; Sheldon, S.W.; Eisen, R.J. A molecular algorithm to detect and differentiate human pathogens infecting Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae). Ticks Tick-Borne Dis. 2018, 9, 390–403. [Google Scholar] [CrossRef]
- Courtney, J.W.; Kostelnik, L.M.; Zeidner, N.S.; Massung, R.F. Multiplex Real-Time PCR for Detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004, 42, 3164–3168. [Google Scholar] [CrossRef]
- Dinkel, K.D.; Herndon, D.R.; Noh, S.M.; Lahmers, K.K.; Todd, S.M.; Ueti, M.W.; Scoles, G.A.; Mason, K.L.; Fry, L.M. A US isolate of Theileria orientalis, Ikeda genotype, is transmitted to cattle by the invasive Asian longhorned tick, Haemaphysalis longicornis. Parasites Vectors 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
No. Ticks Human Blood Meal Positive (N = 76) | No. Ticks Human Blood Meal Negative (N = 149) | p-Value | OR | 95% CI | |
---|---|---|---|---|---|
Genus | |||||
Prostriata | 33 (43.4%) | 75 (50.3%) | - | - | - |
Metastriate | 43 (56.6%) | 74 (49.7%) | 0.327 | 1.32 | 0.76 to 2.31 |
Species | |||||
Amblyomma americanum | 11 (14.5%) | 29 (19.5%) | 0.356 | 0.70 | 0.33 to 1.49 |
Dermacentor variabilis | 26 (34.2%) | 34 (22.8%) | 0.069 | 1.776 | 0.96 to 3.23 |
Amblyomma maculatum | 0 (0.0%) | 5 (3.4%) | - | - | - |
Ixodes scapularis | 25 (32.9%) | 64 (43.0%) | 0.146 | 0.65 | 0.37 to 1.16 |
Ixodes kieransi | 8 (10.5%) | 11 (7.4%) | 0.425 | 1.48 | 0.57 to 3.84 |
Haemaphyalis longicornis | 6 (7.9%) | 6 (4.0%) | 0.230 | 2.04 | 0.64 to 6.56 |
Calendar Month | |||||
January | 22 (28.9%) | 44 (29.5%) | 0.928 | 0.78 | 0.53 to 1.79 |
February | 1 (1.3%) | 12 (8.1%) | 0.073 | 0.15 | 0.02 to 1.19 |
March | 18 (23.7%) | 18 (12.1%) | 0.027 | 2.26 | 1.10 to 4.65 |
May | 33 (43.4%) | 74 (49.7%) | 0.376 | 0.15 | 0.45 to 1.36 |
July | 2 (2.6%) | 1 (0.7%) | 0.261 | 0.97 | 0.36 to 44.83 |
Location | |||||
Region | |||||
Lowcountry | 25 (32.9%) | 68 (45.6%) | 0.068 | 0.58 | 0.33 to 1.04 |
PeeDee | 18 (23.7%) | 22 (14.8%) | 0.101 | 1.79 | 0.89 to 3.59 |
Midlands | 2 (2.6%) | 1 (0.7%) | 0.261 | 3.99 | 0.36 to 44.83 |
Upstate | 31 (40.8%) | 58 (38.9%) | 0.787 | 1.08 | 0.62 to 1.90 |
County * | |||||
Aiken | 2 (2.6%) | 1 (0.7%) | 0.261 | 3.99 | 0.36 to 44.83 |
Charleston | 25 (32.9%) | 68 (45.6%) | 0.068 | 0.58 | 0.33 to 1.04 |
Clarendon | 0 (0.0%) | 4 (2.7%) | - | - | - |
Greenville | 2 (2.6%) | 12 (8.1%) | 0.130 | 0.31 | 0.07 to 1.41 |
Greenwood | 22 (28.9%) | 40 (26.8%) | 0.739 | 1.11 | 0.60 to 2.05 |
Horry | 18 (23.7%) | 18 (12.1.%) | 0.027 | 2.26 | 1.10 to 4.65 |
Pickens | 6 (7.9%) | 6 (4.0%) | 0.230 | 2.04 | 0.64 to 6.56 |
York | 1 (1.3%) | 0 (0.0%) | - | - | - |
Pathogen Testing | |||||
Overall Total Positives | 37 (48.7%) | 68 (45.6%) | 0.665 | 1.13 | 0.65 to 1.97 |
Panola Mountain Ehrlichia | 1 (1.3%) | 6 (4.0%) | 0.263 | 0.29 | 0.04 to 2.51 |
Ehrlichia ewingii | 1 (1.3%) | 4 (2.7%) | 0.484 | 0.45 | 0.50 to 4.19 |
Ehrlichia chaffeensis | 3 (3.9%) | 1 (0.7%) | 0.127 | 6.00 | 0.60 to 59.86 |
Rickettsia species | 36 (24.2%) | 66 (44.3%) | 0.692 | 1.59 | 0.16 to 15.87 |
Rickettsia parkeri | 17 (11.4%) | 31 (20.8%) | 0.920 | 1.04 | 0.47 to 2.32 |
Rickettsia rickettsii | 0 (0.0%) | 0 (0.0%) | - | - | - |
Rickettsia amblyommatis | 24 (31.6%) | 42 (28.2%) | 0.686 | 1.19 | 0.52 to 2.72 |
Borrelia burgdorferi | 0 (0.0%) | 1 (0.7%) | - | - | - |
Anaplasma phagocytophilum | 1 (1.3%) | 0 (0.0%) | - | - | - |
Theileria orientalis | 0 (0.0%) | 0 (0.0%) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bramlett, K.E.; Witt, L.E.; Meyer, M.M.; Zellars, K.; Dye-Braumuller, K.C.; Nolan, M.S. Evidence of Incomplete Feeding Behaviors among South Carolina Tick Populations. Insects 2024, 15, 385. https://doi.org/10.3390/insects15060385
Bramlett KE, Witt LE, Meyer MM, Zellars K, Dye-Braumuller KC, Nolan MS. Evidence of Incomplete Feeding Behaviors among South Carolina Tick Populations. Insects. 2024; 15(6):385. https://doi.org/10.3390/insects15060385
Chicago/Turabian StyleBramlett, Kayla E., Laura E. Witt, Madeleine M. Meyer, Kia Zellars, Kyndall C. Dye-Braumuller, and Melissa S. Nolan. 2024. "Evidence of Incomplete Feeding Behaviors among South Carolina Tick Populations" Insects 15, no. 6: 385. https://doi.org/10.3390/insects15060385