Clay Minerals and Biopolymers in Film Design: Overview of Properties and Applications
Abstract
:1. Introduction
2. Different Methods of Manufacturing Biofilms
3. Relevant Characterizations and Properties
4. Main Clays and Clay Minerals Used in the Composition of Biofilms
5. Nanofillers as Active Compounds
5.1. Metal Oxide Nanoparticles
5.2. Essential Oils
5.3. Plant Extracts
5.4. Carbon Nanofillers
6. Main Applications of Biofilms Based on Clay Minerals and Biopolymers
6.1. Food Packaging
6.2. Wound Dressing
7. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perera, K.Y.; Hopkins, M.; Jaiswal, A.K.; Jaiswal, S. Nanoclays-Containing Bio-Based Packaging Materials: Properties, Applications, Safety, and Regulatory Issues. J. Nanostruct. Chem. 2024, 14, 71–93. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Darder, M.; Fernandes, F.M.; Wicklein, B.; Alcântara, A.C.S.; Aranda, P. Fibrous Clays Based Bionanocomposites. Prog. Polym. Sci. 2013, 38, 1392–1414. [Google Scholar] [CrossRef]
- de Oliveira, L.H.; Trigueiro, P.; Souza, J.S.N.; de Carvalho, M.S.; Osajima, J.A.; da Silva-Filho, E.C.; Fonseca, M.G. Montmorillonite with Essential Oils as Antimicrobial Agents, Packaging, Repellents, and Insecticides: An Overview. Colloids Surfaces B Biointerfaces 2022, 209, 112186. [Google Scholar] [CrossRef]
- Alcântara, A.C.S.; Darder, M.; Aranda, P.; Ruiz-Hitzky, E. Polysaccharide–Fibrous Clay Bionanocomposites. Appl. Clay Sci. 2014, 96, 2–8. [Google Scholar] [CrossRef]
- Nimbagal, V.; Banapurmath, N.R.; Sajjan, A.M.; Patil, A.Y.; Ganachari, S.V. Studies on Hybrid Bio-Nanocomposites for Structural Applications. J. Mater. Eng. Perform. 2021, 30, 6461–6480. [Google Scholar] [CrossRef]
- Naskar, A.; Sanyal, I.; Nahar, N.; Ghosh, D.D.; Chakraborty, S. Bionanocomposites Films Applied as Active and Smart Food Packaging: A Review. Polym. Eng. Sci. 2023, 63, 2675–2699. [Google Scholar] [CrossRef]
- Gobi, R.; Ravichandiran, P.; Babu, R.S.; Yoo, D.J. Biopolymer and Synthetic Polymer-Based Nanocomposites in Wound Dressing Applications: A Review. Polymers 2021, 13, 1962. [Google Scholar] [CrossRef]
- Abourehab, M.A.S.; Rajendran, R.R.; Singh, A.; Pramanik, S.; Shrivastav, P.; Ansari, M.J.; Manne, R.; Amaral, L.S.; Deepak, A. Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 9035. [Google Scholar] [CrossRef]
- García-Guzmán, L.; Cabrera-Barjas, G.; Soria-Hernández, C.G.; Castaño, J.; Guadarrama-Lezama, A.Y.; Rodríguez Llamazares, S. Progress in Starch-Based Materials for Food Packaging Applications. Polysaccharides 2022, 3, 136–177. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
- Tyuftin, A.A.; Kerry, J.P. Gelatin Films: Study Review of Barrier Properties and Implications for Future Studies Employing Biopolymer Films. Food Packag. Shelf Life 2021, 29, 100688. [Google Scholar] [CrossRef]
- Kumar, S.; Reddy, A.R.L.; Basumatary, I.B.; Nayak, A.; Dutta, D.; Konwar, J.; Das Purkayastha, M.; Mukherjee, A. Recent Progress in Pectin Extraction and Their Applications in Developing Films and Coatings for Sustainable Food Packaging: A Review. Int. J. Biol. Macromol. 2023, 239, 124281. [Google Scholar] [CrossRef]
- Mallakpour, S.; Sirous, F.; Hussain, C.M. A Journey to the World of Fascinating ZnO Nanocomposites Made of Chitosan, Starch, Cellulose, and Other Biopolymers: Progress in Recent Achievements in Eco-Friendly Food Packaging, Biomedical, and Water Remediation Technologies. Int. J. Biol. Macromol. 2021, 170, 701–716. [Google Scholar] [CrossRef]
- Heydari, A.; KhajeHassani, M.; Daneshafruz, H.; Hamedi, S.; Dorchei, F.; Kotlár, M.; Kazeminava, F.; Sadjadi, S.; Doostan, F.; Chodak, I.; et al. Thermoplastic Starch/Bentonite Clay Nanocomposite Reinforced with Vitamin B2: Physicochemical Characteristics and Release Behavior. Int. J. Biol. Macromol. 2023, 242, 124742. [Google Scholar] [CrossRef]
- Aguirre-Loredo, R.Y.; Fonseca-García, A.; Calambas, H.L.; Salazar-Arango, A.; Caicedo, C. Improvements of Thermal and Mechanical Properties of Achira Starch/Chitosan/Clay Nanocomposite Films. Heliyon 2023, 9, e16782. [Google Scholar] [CrossRef]
- Das, D.; Panesar, P.S.; Saini, C.S. Effect of Montmorillonite (MMT) on the Properties of Soybean Meal Protein Isolate-Based Nanocomposite Film Loaded with Debittered Kinnow Peel Powder. Food Res. Int. 2024, 185, 114292. [Google Scholar] [CrossRef]
- El Bourakadi, K.; el kacem Qaiss, A.; Bouhfid, R. Bio-Films Based on Alginate/Modified Clay through Spray Drying: Mechanical, Rheological, Morphological, and Transport Properties for Potential Use as Active Food Packaging. Int. J. Biol. Macromol. 2022, 210, 663–668. [Google Scholar] [CrossRef]
- Lagarón, J.M.; López-Rubio, A.; José Fabra, M. Bio-based Packaging. J. Appl. Polym. Sci. 2016, 133, 42971. [Google Scholar] [CrossRef]
- Kurczewska, J.; Ratajczak, M.; Gajecka, M. Alginate and Pectin Films Covering Halloysite with Encapsulated Salicylic Acid as Food Packaging Components. Appl. Clay Sci. 2021, 214, 106270. [Google Scholar] [CrossRef]
- Kaygusuz, H.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; von Klitzing, R.; Erim, F.B. Antimicrobial Cerium Ion-Chitosan Crosslinked Alginate Biopolymer Films: A Novel and Potential Wound Dressing. Int. J. Biol. Macromol. 2017, 105, 1161–1165. [Google Scholar] [CrossRef]
- Kerch, G. Chitosan Films and Coatings Prevent Losses of Fresh Fruit Nutritional Quality: A Review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Qu, B.; Luo, Y. A Review on the Preparation and Characterization of Chitosan-Clay Nanocomposite Films and Coatings for Food Packaging Applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100102. [Google Scholar] [CrossRef]
- Shah, S.; Hashmi, M.S. Chitosan–Aloe Vera Gel Coating Delays Postharvest Decay of Mango Fruit. Hortic. Environ. Biotechnol. 2020, 61, 279–289. [Google Scholar] [CrossRef]
- Leidy, R.; Maria Ximena, Q.-C. Use of Electrospinning Technique to Produce Nanofibres for Food Industries: A Perspective from Regulations to Characterisations. Trends Food Sci. Technol. 2019, 85, 92–106. [Google Scholar] [CrossRef]
- Huang, Y.; Dan, N.; Dan, W.; Zhao, W. Reinforcement of Polycaprolactone/Chitosan with Nanoclay and Controlled Release of Curcumin for Wound Dressing. ACS Omega 2019, 4, 22292–22301. [Google Scholar] [CrossRef]
- Gao, W.; Dong, H.; Hou, H.; Zhang, H. Effects of Clays with Various Hydrophilicities on Properties of Starch–Clay Nanocomposites by Film Blowing. Carbohydr. Polym. 2012, 88, 321–328. [Google Scholar] [CrossRef]
- Versino, F.; Lopez, O.V.; Garcia, M.A.; Zaritzky, N.E. Starch-Based Films and Food Coatings: An Overview. Starch/Staerke 2016, 68, 1026–1037. [Google Scholar] [CrossRef]
- Bergaya, F.; Detellier, C.; Lambert, J.F.; Lagaly, G. Introduction to Clay-Polymer Nanocomposites (CPN), 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, ISBN 9780080982588. [Google Scholar]
- Bergaya, F.; Lagaly, G. General Introduction. In Developments in Clay Science—Handbook of Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Oxford, UK, 2013; Chapter 1; pp. 1–19. ISBN 9780080982588. [Google Scholar]
- Jin, S.; Li, K.; Xia, C.; Li, J. Sodium Alginate-Assisted Route to Antimicrobial Biopolymer Film Combined with Aminoclay for Enhanced Mechanical Behaviors. Ind. Crop. Prod. 2019, 135, 271–282. [Google Scholar] [CrossRef]
- Naidu, D.S.; John, M.J. Effect of Clay Nanofillers on the Mechanical and Water Vapor Permeability Properties of Xylan–Alginate Films. Polymers 2020, 12, 2279. [Google Scholar] [CrossRef] [PubMed]
- Madejová, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2017; Volume 8, pp. 107–149. ISBN 9780081003558. [Google Scholar]
- Balavairavan, B.; Saravanakumar, S.S.; Senthamaraikannan, P.; Indran, S.; Siengchin, S. Evaluation of Physiochemical, Mechanical, Thermal, UV Barrier, and Biodegradation Properties of PVA/Corn (Zea mays) Cob Powder Biofilms. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Trigueiro, P.; Pedetti, S.; Rigaud, B.; Balme, S.; Janot, J.M.J.-M.; dos Santos, I.M.G.I.M.G.; Gougeon, R.; Fonseca, M.G.M.G.; Georgelin, T.; Jaber, M. Going through the Wine Fining: Intimate Dialogue between Organics and Clays. Colloids Surf. B Biointerfaces 2018, 166, 79–88. [Google Scholar] [CrossRef]
- Ding, J.; Huang, D.; Wang, W.; Wang, Q.; Wang, A. Effect of Removing Coloring Metal Ions from the Natural Brick-Red Palygorskite on Properties of Alginate/Palygorskite Nanocomposite Film. Int. J. Biol. Macromol. 2019, 122, 684–694. [Google Scholar] [CrossRef]
- Nozari, M.; Gholizadeh, M.; Zahiri Oghani, F.; Tahvildari, K. Studies on Novel Chitosan/Alginate and Chitosan/Bentonite Flexible Films Incorporated with ZnO Nano Particles for Accelerating Dermal Burn Healing: In Vivo and in Vitro Evaluation. Int. J. Biol. Macromol. 2021, 184, 235–249. [Google Scholar] [CrossRef]
- Krasucka, P.; Mergo, P.; Wójcik, G.; Goworek, J. Mechanical Experiments as a Tool for Study of Swelling-Deswelling and Structural Properties of Porous Polymers. Chem. Eng. Sci. 2018, 190, 21–27. [Google Scholar] [CrossRef]
- Shankar, S.; Kasapis, S.; Rhim, J.-W. Alginate-Based Nanocomposite Films Reinforced with Halloysite Nanotubes Functionalized by Alkali Treatment and Zinc Oxide Nanoparticles. Int. J. Biol. Macromol. 2018, 118, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Warale, D.; Prabhu, A.; Kouser, S.; Shabeena, M.; Manasa, D.J.; Nagaraja, G.K. Incorporation of Sodium Alginate Functionalized Halloysite Nanofillers into Poly (Vinyl Alcohol) to Study Mechanical, Cyto/Heme Compatibility and Wound Healing Application. Int. J. Biol. Macromol. 2023, 232, 123278. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Mao, R.; Huang, Z.; Jing, K.; Jin, C.; Yang, B.; Qi, J.; Yu, M.; Xiong, G.; et al. A Novel Multilayer Film Based on Sodium Alginate/k-Carrageenan-Gelatin Incorporated with ZnO Nanoparticles and Oregano Essential Oil for Active Food Packing. Prog. Org. Coat. 2024, 187, 108170. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Afzaal, M.; Saeed, F.; Anwer, M.K.; Khan, M.R.; Jawad, M.; Akram, N.; Faisal, Z. Mechanical Properties of Protein-Based Food Packaging Materials. Polymers 2023, 15, 1724. [Google Scholar] [CrossRef]
- Giannakas, A.; Grigoriadi, K.; Leontiou, A.; Barkoula, N.-M.; Ladavos, A. Preparation, Characterization, Mechanical and Barrier Properties Investigation of Chitosan–Clay Nanocomposites. Carbohydr. Polym. 2014, 108, 103–111. [Google Scholar] [CrossRef]
- Shanmugapriya, K.; Kim, H.; Saravana, P.S.; Chun, B.-S.; Kang, H.W. Fabrication of Multifunctional Chitosan-Based Nanocomposite Film with Rapid Healing and Antibacterial Effect for Wound Management. Int. J. Biol. Macromol. 2018, 118, 1713–1725. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Hosseini, H.; Abdollahi, M. Antimicrobial Activity of Alginate/Clay Nanocomposite Films Enriched with Essential Oils against Three Common Foodborne Pathogens. Food Control 2014, 36, 1–7. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.-W. Physical, Mechanical and Antimicrobial Properties of Gelatin Based Active Nanocomposite Films Containing AgNPs and Nanoclay. Food Hydrocoll. 2014, 35, 644–652. [Google Scholar] [CrossRef]
- Ambrogi, V.; Pietrella, D.; Nocchetti, M.; Casagrande, S.; Moretti, V.; De Marco, S.; Ricci, M. Montmorillonite–Chitosan–Chlorhexidine Composite Films with Antibiofilm Activity and Improved Cytotoxicity for Wound Dressing. J. Colloid Interface Sci. 2017, 491, 265–272. [Google Scholar] [CrossRef]
- Li, S.; Mu, B.; Zhang, H.; Kang, Y.; Wang, A. Incorporation of Silver Nanoparticles/Curcumin/Clay Minerals into Chitosan Film for Enhancing Mechanical Properties, Antioxidant and Antibacterial Activity. Int. J. Biol. Macromol. 2022, 223, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kim, S.Y.; Park, H.J. Effect of Halloysite Nanoclay on the Physical, Mechanical, and Antioxidant Properties of Chitosan Films Incorporated with Clove Essential Oil. Food Hydrocoll. 2018, 84, 58–67. [Google Scholar] [CrossRef]
- Giannakas, A.; Stathopoulou, P.; Tsiamis, G.; Salmas, C. The Effect of Different Preparation Methods on the Development of Chitosan/Thyme Oil/Montmorillonite Nanocomposite Active Packaging Films. J. Food Process. Preserv. 2020, 44, e14327. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Wang, X.; Shen, Y.; Thakur, K.; Zhang, J.G.; Hu, F.; Wei, Z.J. Preparation and Characterization of Bio-Nanocomposites Film of Chitosan and Montmorillonite Incorporated with Ginger Essential Oil and Its Application in Chilled Beef Preservation. Antibiotics 2021, 10, 796. [Google Scholar] [CrossRef] [PubMed]
- El Mouzahim, M.; Eddarai, E.M.; Eladaoui, S.; Guenbour, A.; Bellaouchou, A.; Zarrouk, A.; Boussen, R. Food Packaging Composite Film Based on Chitosan, Natural Kaolinite Clay, and Ficus. Carica Leaves Extract for Fresh-Cut Apple Slices Preservation. Int. J. Biol. Macromol. 2023, 233, 123430. [Google Scholar] [CrossRef]
- Lambert, J.F.; Bergaya, F. Smectite-Polymer Nanocomposites, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, ISBN 9780080982588. [Google Scholar]
- Dharini, V.; Periyar Selvam, S.; Jayaramudu, J.; Sadiku Emmanuel, R. Functional Properties of Clay Nanofillers Used in the Biopolymer-Based Composite Films for Active Food Packaging Applications—Review. Appl. Clay Sci. 2022, 226, 106555. [Google Scholar] [CrossRef]
- da Rocha, M.C.; Galdino, T.; Trigueiro, P.; Honorio, L.M.C.; de Barbosa, R.M.; Carrasco, S.M.; Silva-Filho, E.C.; Osajima, J.A.; Viseras, C. Clays as Vehicles for Drug Photostability. Pharmaceutics 2022, 14, 796. [Google Scholar] [CrossRef]
- Cunha, R.; Trigueiro, P.; del Orta Cuevas, M.M.; Medina-Carrasco, S.; Duarte, T.M.; Honório, L.M.d.C.; Damacena, D.H.L.; Fonseca, M.G.; da Silva-Filho, E.C.; Osajima, J.A. The Stability of Anthocyanins and Their Derivatives through Clay Minerals: Revising the Current Literature. Minerals 2023, 13, 268. [Google Scholar] [CrossRef]
- Freitas, W.; Trigueiro, P.; Marinho, T.; Honorio, L.M.; Silva-Filho, E.C.; Furtini, M.B.; Cecília, J.A.; Fonseca, M.G.; Osajima, J. The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation. Ceramics 2022, 5, 862–882. [Google Scholar] [CrossRef]
- Schoonheydt, R.A.; Johnston, C.T.; Bergaya, F. Clay Minerals and Their Surfaces. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2018; Volume 9, pp. 1–21. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Galán, E.; Theng, B.K.G. Structure and Mineralogy of Clay Minerals; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, ISBN 9780080982588. [Google Scholar]
- Tournassat, C.; Bourg, I.C.; Steefel, C.I.; Bergaya, F. Surface Properties of Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2015; Volume 6, pp. 5–31. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Rostami, H.; Esfahani, A.A. Development a Smart Edible Nanocomposite Based on Mucilage of Melissa Officinalis Seed/Montmorillonite (MMT)/Curcumin. Int. J. Biol. Macromol. 2019, 141, 171–177. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.G.; dos Santos, N.M.A.; da Silva Torin, R.F.; dos Santos Rosa, D. Synergic Antimicrobial Properties of Carvacrol Essential Oil and Montmorillonite in Biodegradable Starch Films. Int. J. Biol. Macromol. 2020, 164, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Naseri-Nosar, M.; Salehi, M.; Farzamfar, S.; Azami, M. The Single and Synergistic Effects of Montmorillonite and Curcumin-Loaded Chitosan Microparticles Incorporated onto Poly (Lactic Acid) Electrospun Film on Wound-Healing. J. Bioact. Compat. Polym. 2018, 33, 239–253. [Google Scholar] [CrossRef]
- Tomás, H.; Alves, C.S.; Rodrigues, J. Laponite®: A Key Nanoplatform for Biomedical Applications? Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2407–2420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, C.H.; Petit, S.; Zhang, H. Hectorite: Synthesis, Modification, Assembly and Applications. Appl. Clay Sci. 2019, 177, 114–138. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, X.; Li, Y.-C.; Xiao, H.; Wang, X. Novel Chitosan Films with Laponite Immobilized Ag Nanoparticles for Active Food Packaging. Carbohydr. Polym. 2018, 199, 210–218. [Google Scholar] [CrossRef]
- Pineda-Álvarez, R.A.; Flores-Avila, C.; Medina-Torres, L.; Gracia-Mora, J.; Escobar-Chávez, J.J.; Leyva-Gómez, G.; Shahbazi, M.A.; Bernad-Bernad, M.J. Laponite Composites: In Situ Films Forming as a Possible Healing Agent. Pharmaceutics 2023, 15, 1634. [Google Scholar] [CrossRef]
- Shafei, L.; Adhikari, P.; Ching, W.Y. Dft Study of Electronic Structure and Optical Properties of Kaolinite, Muscovite, and Montmorillonite. Crystals 2021, 11, 618. [Google Scholar] [CrossRef]
- Kwaśniewska, A.; Chocyk, D.; Gładyszewski, G.; Borc, J.; Świetlicki, M.; Gładyszewska, B. The Influence of Kaolin Clay on the Mechanical Properties and Structure of Thermoplastic Starch Films. Polymers 2020, 12, 73. [Google Scholar] [CrossRef]
- Tabassum, N.; Rafique, U.; Qayyum, M.; Mohammed, A.A.A.; Asif, S.; Bokhari, A. Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization. J. Compos. Sci. 2024, 8, 29. [Google Scholar] [CrossRef]
- Massaro, M.; Noto, R.; Riela, S. Past, Present and Future Perspectives on Halloysite Clay Minerals. Molecules 2020, 25, 4863. [Google Scholar] [CrossRef]
- da Silva, G.L.P.; de Morais, L.C.A.; Olivato, J.B.; Marini, J.; Ferrari, P.C. Antimicrobial Dressing of Silver Sulfadiazine-Loaded Halloysite/Cassava Starch-Based (Bio) Nanocomposites. J. Biomater. Appl. 2021, 35, 1096–1108. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, A. From Structure Evolution of Palygorskite to Functional Material: A Review. Microporous Mesoporous Mater. 2022, 333, 111765. [Google Scholar] [CrossRef]
- Yang, F.; Wang, A. Recent Researches on Antimicrobial Nanocomposite and Hybrid Materials Based on Sepiolite and Palygorskite. Appl. Clay Sci. 2022, 219, 106454. [Google Scholar] [CrossRef]
- Jamróz, E.; Kulawik, P.; Kopel, P. The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers 2019, 11, 675. [Google Scholar] [CrossRef]
- Tian, G.; Wang, Z.; Huang, Z.; Xie, Z.; Xia, L. Clays and Wound Healing. Materials 2024, 17, 1691. [Google Scholar] [CrossRef]
- Araujo, F.P.; Honorio, L.M.C.; Lima, I.S.; Trigueiro, P.; Almeida, L.C.; Fechine, P.B.A.; Santos, F.E.P.; Peña-Garcia, R.; Silva-Filho, E.C.; Osajima, J.A. New Composite TiO2/Naturals Gums for High Efficiency in Photodiscoloration Process. Ceram. Int. 2020, 46, 15534–15543. [Google Scholar] [CrossRef]
- Lins, A.; Jerônimo, A.G.; Barbosa, R.; Neves, L.; Trigueiro, P.; Almeida, L.C.; Osajima, J.A.; Pereira, F.A.; Peña-Garcia, R.R. Facile Synthesis of Ni-Doped ZnO Nanoparticles Using Cashew Gum: Investigation of the Structural, Optical, and Photocatalytic Properties. Molecules 2023, 28, 7772. [Google Scholar] [CrossRef]
- Silva, M.C.R.; Castro-Lopes, S.; Jerônimo, A.G.; Barbosa, R.; Lins, A.; Trigueiro, P.; Viana, B.C.; Araujo, F.P.; Osajima, J.A.; Peña-Garcia, R.R. Green Synthesis of Er-Doped ZnO Nanoparticles: An Investigation on the Methylene Blue, Eosin, and Ibuprofen Removal by Photodegradation. Molecules 2024, 29, 391. [Google Scholar] [CrossRef]
- Alzahrani, K.E.; Aniazy, A.; Alswieleh, A.M.; Wahab, R.; El-Toni, A.M.; Alghamdi, H.S. Antibacterial Activity of Trimetal (CuZnFe) Oxide Nanoparticles. Int. J. Nanomed. 2018, 13, 77–87. [Google Scholar] [CrossRef]
- Leng, Q.; Yang, D.; Yang, Q.; Hu, C.; Kang, Y.; Wang, M.; Hashim, M. Building Novel Ag/CeO2 Heterostructure for Enhancing Photocatalytic Activity. Mater. Res. Bull. 2015, 65, 266–272. [Google Scholar] [CrossRef]
- Zehra, A.; Wani, S.M.; Bhat, T.A.; Jan, N.; Hussain, S.Z.; Naik, H.R. Preparation of a Biodegradable Chitosan Packaging Film Based on Zinc Oxide, Calcium Chloride, Nano Clay and Poly Ethylene Glycol Incorporated with Thyme Oil for Shelf-Life Prolongation of Sweet Cherry. Int. J. Biol. Macromol. 2022, 217, 572–582. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Baikousi, M.; Kollia, E.; Tsigkou, V.; Karakassides, A.; Leontiou, A.; Kehayias, G.; Avgeropoulos, A.; et al. Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. Nanomaterials 2022, 12, 1843. [Google Scholar] [CrossRef]
- Rodrigues, C.; de Mello, J.M.M.; Dalcanton, F.; Macuvele, D.L.P.; Padoin, N.; Fiori, M.A.; Soares, C.; Riella, H.G. Mechanical, Thermal and Antimicrobial Properties of Chitosan-Based-Nanocomposite with Potential Applications for Food Packaging. J. Polym. Environ. 2020, 28, 1216–1236. [Google Scholar] [CrossRef]
- Cheng, X.; Yao, J.; Fan, W.; Zhen, L. Facile Fabrication and Biological Investigations of Metal Oxides Intercalated in Kaolinite Clay-Based Dressing Material to Improve Wound Healing Ability in Nursing Care after Post-Operative Period. Heliyon 2024, 10, e25289. [Google Scholar] [CrossRef]
- Ding, J.; Hui, A.; Wang, W.; Yang, F.; Kang, Y.; Wang, A. Multifunctional Palygorskite@ZnO Nanorods Enhance Simultaneously Mechanical Strength and Antibacterial Properties of Chitosan-Based Film. Int. J. Biol. Macromol. 2021, 189, 668–677. [Google Scholar] [CrossRef]
- Jaberifard, F.; Ghorbani, M.; Arsalani, N.; Mostafavi, H. A Novel Insoluble Film Based on Crosslinked-Starch with Gelatin Containing ZnO-Loaded Halloysite Nanotube and Bacterial Nanocellulose for Wound Healing Applications. Appl. Clay Sci. 2022, 230, 106667. [Google Scholar] [CrossRef]
- Sayyar, Z.; Hosseini, Z.; Beheshtizadeh, N. Developing Curcumin Loaded-Magnetic Montmorillonite Nanoparticles/Polyvinyl Alcohol/Hyaluronic Acid/Chitosan Nanofiber Mats as a Wound Dressing. J. Drug Deliv. Sci. Technol. 2024, 93, 105408. [Google Scholar] [CrossRef]
- Alekseeva, O.V.; Rodionova, A.N.; Bagrovskaya, N.A.; Agafonov, A.V.; Noskov, A.V. Hydroxyethyl Cellulose/Bentonite/Magnetite Hybrid Materials: Structure, Physicochemical Properties, and Antifungal Activity. Cellulose 2017, 24, 1825–1836. [Google Scholar] [CrossRef]
- Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 1062562. [Google Scholar] [CrossRef]
- Gharibshahi, L.; Saion, E.; Gharibshahi, E.; Shaari, A.H.; Matori, K.A. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method. Materials 2017, 10, 402. [Google Scholar] [CrossRef]
- Istiqola, A.; Syafiuddin, A. A Review of Silver Nanoparticles in Food Packaging Technologies: Regulation, Methods, Properties, Migration, and Future Challenges. J. Chin. Chem. Soc. 2020, 67, 1942–1956. [Google Scholar] [CrossRef]
- Amirsadeghi, A.; Jafari, A.; Hashemi, S.-S.; Kazemi, A.; Ghasemi, Y.; Derakhshanfar, A.; Shahbazi, M.-A.; Niknezhad, S.V. Sprayable Antibacterial Persian Gum-Silver Nanoparticle Dressing for Wound Healing Acceleration. Mater. Today Commun. 2021, 27, 102225. [Google Scholar] [CrossRef]
- Ioța, M.A.; Cursaru, L.M.; Șchiopu, A.G.; Tudor, I.A.; Motoc, A.M.; Piticescu, R.M. Fe3O4 Core–Shell Nanostructures with Anticancer and Antibacterial Properties: A Mini-Review. Processes 2023, 11, 1882. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Z.; Liu, K.; Wang, W.; Peng, W.; Ma, H.; Wang, Q.; Shi, X.; Sun, H.; Duan, X. Electrospun Fe3O4-Chitosan/Polyvinyl Alcohol Nanofibrous Film for Improved Capture and Elimination of Foodborne Pathogens. Int. J. Biol. Macromol. 2023, 253, 126692. [Google Scholar] [CrossRef]
- Bhatia, S.; Abbas Shah, Y.; Al-Harrasi, A.; Jawad, M.; Koca, E.; Aydemir, L.Y. Enhancing Tensile Strength, Thermal Stability, and Antioxidant Characteristics of Transparent Kappa Carrageenan Films Using Grapefruit Essential Oil for Food Packaging Applications. ACS Omega 2024, 9, 9003–9012. [Google Scholar] [CrossRef]
- Yammine, J.; Chihib, N.E.; Gharsallaoui, A.; Ismail, A.; Karam, L. Advances in Essential Oils Encapsulation: Development, Characterization and Release Mechanisms; Springer: Berlin/Heidelberg, Germany, 2024; Volume 81, ISBN 0123456789. [Google Scholar]
- Hossen, M.A.; Shimul, I.M.; Sameen, D.E.; Rasheed, Z.; Dai, J.; Li, S.; Qin, W.; Tang, W.; Chen, M.; Liu, Y. Essential Oil–Loaded Biopolymeric Particles on Food Industry and Packaging: A Review. Int. J. Biol. Macromol. 2024, 265, 130765. [Google Scholar] [CrossRef]
- Proença, L.B.; Righetto, G.M.; da Camargo, I.L.B.C.; Branciforti, M.C. Poly (Acid Lactic)-Montmorillonite Clay Bionanocomposites Loaded with Tea Tree Oil for Application in Antibacterial Wound Healing. Hybrid Adv. 2024, 6, 100201. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.S.; Fernandes, F.M.B.; Duarte, M.P.; Coelhoso, I.M.; Fernando, A.L. Bionanocomposites of Chitosan/Montmorillonite Incorporated with Rosmarinus Officinalis Essential Oil: Development and Physical Characterization. Food Packag. Shelf Life 2018, 16, 148–156. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Vieira, É.T.; Coelhoso, I.M.; Duarte, M.P.; Fernando, A.L. Activity of Chitosan-Montmorillonite Bionanocomposites Incorporated with Rosemary Essential Oil: From in Vitro Assays to Application in Fresh Poultry Meat. Food Hydrocoll. 2019, 89, 241–252. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Rodrigues, P.F.; Lopes, A.; Silva, R.J.; Caldeira, J.; Duarte, M.P.; Fernandes, F.B.; Coelhoso, I.M.; et al. Physical and Morphological Characterization of Chitosan/Montmorillonite Films Incorporated with Ginger Essential Oil. Coatings 2019, 9, 700. [Google Scholar] [CrossRef]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Figueroa, N.E.; Sanfuentes, E.A. Thermoplastic Starch/Clay Nanocomposites Loaded with Essential Oil Constituents as Packaging for Strawberries − In Vivo Antimicrobial Synergy over Botrytis Cinerea. Postharvest Biol. Technol. 2017, 129, 29–36. [Google Scholar] [CrossRef]
- Pola, C.C.; Medeiros, E.A.A.; Pereira, O.L.; Souza, V.G.L.; Otoni, C.G.; Camilloto, G.P.; Soares, N.F.F. Cellulose Acetate Active Films Incorporated with Oregano (Origanum vulgare) Essential Oil and Organophilic Montmorillonite Clay Control the Growth of Phytopathogenic Fungi. Food Packag. Shelf Life 2016, 9, 69–78. [Google Scholar] [CrossRef]
- Saranti, T.F.d.S.; Melo, P.T.S.; Cerqueira, M.A.; Aouada, F.A.; de Moura, M.R. Performance of Gelatin Films Reinforced with Cloisite Na+ and Black Pepper Essential Oil Loaded Nanoemulsion. Polymers 2021, 13, 4298. [Google Scholar] [CrossRef] [PubMed]
- Hammoudi, N.; Ziani Cherif, H.; Borsali, F.; Benmansour, K.; Meghezzi, A. Preparation of Active Antimicrobial and Antifungal Alginate-Montmorillonite/Lemon Essential Oil Nanocomposite Films. Mater. Technol. 2020, 35, 383–394. [Google Scholar] [CrossRef]
- Kashiri, M.; Maghsoudlo, Y.; khomeiri, M. Incorporating Zataria Multiflora Boiss. Essential Oil and Sodium Bentonite Nano-Clay Open a New Perspective to Use Zein Films as Bioactive Packaging Materials. Food Sci. Technol. Int. 2017, 23, 582–596. [Google Scholar] [CrossRef]
- Iamareerat, B.; Singh, M.; Sadiq, M.B.; Anal, A.K. Reinforced Cassava Starch Based Edible Film Incorporated with Essential Oil and Sodium Bentonite Nanoclay as Food Packaging Material. J. Food Sci. Technol. 2018, 55, 1953–1959. [Google Scholar] [CrossRef]
- Koşarsoy Ağçeli, G.; Hammamchi, H.; Cihangir, N. Novel Levan/Bentonite/Essential Oil Films: Characterization and Antimicrobial Activity. J. Food Sci. Technol. 2022, 59, 249–256. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Wani, A.A.; Shah, M.A. Effect of Plant Extracts on the Techno-Functional Properties of Biodegradable Packaging Films. Trends Food Sci. Technol. 2018, 80, 141–154. [Google Scholar] [CrossRef]
- Alshehri, A.A.; Kamel, R.M.; Gamal, H.; Sakr, H.; Saleh, M.N.; El-Bana, M.; El-Dreny, E.-S.G.; Fadly, E.E.; Abdin, M.; Salama, M.A.; et al. Sodium Alginate Films Incorporated with Lepidium Sativum (Garden Cress) Extract as a Novel Method to Enhancement the Oxidative Stability of Edible Oil. Int. J. Biol. Macromol. 2024, 265, 130949. [Google Scholar] [CrossRef]
- Cheikh, D.; Martín-Sampedro, R.; Majdoub, H.; Darder, M. Alginate Bionanocomposite Films Containing Sepiolite Modified with Polyphenols from Myrtle Berries Extract. Int. J. Biol. Macromol. 2020, 165, 2079–2088. [Google Scholar] [CrossRef]
- Toro-Márquez, L.A.; Merino, D.; Gutiérrez, T.J. Bionanocomposite Films Prepared from Corn Starch with and Without Nanopackaged Jamaica (Hibiscus Sabdariffa) Flower Extract. Food Bioprocess Technol. 2018, 11, 1955–1973. [Google Scholar] [CrossRef]
- Nouri, A.; Tavakkoli Yaraki, M.; Ghorbanpour, M.; Wang, S. Biodegradable κ-Carrageenan/Nanoclay Nanocomposite Films Containing Rosmarinus Officinalis L. Extract for Improved Strength and Antibacterial Performance. Int. J. Biol. Macromol. 2018, 115, 227–235. [Google Scholar] [CrossRef]
- Rammak, T.; Boonsuk, P.; Champoochana, N.; Hutamekalin, P.; Kaewtatip, K. Effect of Kaolin Impregnated with Calico Plant Extract on Properties of Starch Films. Int. J. Biol. Macromol. 2024, 254, 127927. [Google Scholar] [CrossRef] [PubMed]
- Sayah, N.; Salem, A.; Abdelhedi, O.; Balti, R.; Zouari, N.; Debeaufort, F.; Hamdi, N.; Jridi, M. Potential of Smectite/Illite/Chamomile Extract in Gelatin Films as Active Food Packaging Materials. Euro-Mediterr. J. Environ. Integr. 2024. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Yan, M.; Yu, J. Carbon Nanostructures in Biology and Medicine. J. Mater. Chem. B 2017, 5, 6437–6450. [Google Scholar] [CrossRef]
- Pires, J.; de Paula, C.D.; Souza, V.G.L.; Fernando, A.L.; Coelhoso, I. Understanding the Barrier and Mechanical Behavior of Different Nanofillers in Chitosan Films for Food Packaging. Polymers 2021, 13, 721. [Google Scholar] [CrossRef]
- Mao, L.; Zuo, J.; Liu, Y.; Zheng, B.; Dai, X.; Bai, Z.; Liu, Y.; Yao, J. Alginate Based Films Integrated with Nitrogen-Functionalized Carbon Dots and Layered Clay for Active Food Packaging Applications. Int. J. Biol. Macromol. 2023, 253, 126653. [Google Scholar] [CrossRef] [PubMed]
- Konwar, A.; Gogoi, N.; Majumdar, G.; Chowdhury, D. Green Chitosan–Carbon Dots Nanocomposite Hydrogel Film with Superior Properties. Carbohydr. Polym. 2015, 115, 238–245. [Google Scholar] [CrossRef]
- Wang, M.; Su, Y.; Liu, Y.; Liang, Y.; Wu, S.; Zhou, N.; Shen, J. Antibacterial Fluorescent Nano-Sized Lanthanum-Doped Carbon Quantum Dot Embedded Polyvinyl Alcohol for Accelerated Wound Healing. J. Colloid Interface Sci. 2022, 608, 973–983. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Liu, B.; Wang, K.; Li, H.; Peng, L. Carboxymethyl Cellulose-Based Multifunctional Film Integrated with Polyphenol-Rich Extract and Carbon Dots from Coffee Husk Waste for Active Food Packaging Applications. Food Chem. 2024, 448, 139143. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Xie, F.; Tang, F.; McNally, T. Graphene Oxide Enhanced Ionic Liquid Plasticisation of Chitosan/Alginate Bionanocomposites. Carbohydr. Polym. 2021, 253, 117231. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Selke, S.E.M. Food Processing: Principles and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Deshmukh, R.K.; Gaikwad, K.K. Natural Antimicrobial and Antioxidant Compounds for Active Food Packaging Applications. Biomass Convers. Biorefinery 2024, 14, 4419–4440. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Yang, X.; Deshmukh, R.K.; Gaikwad, K.K.; Bahmid, N.A.; Castro-Muñoz, R. Recent Advances in Reinforced Bioplastics for Food Packaging—A Critical Review. Int. J. Biol. Macromol. 2024, 263, 130399. [Google Scholar] [CrossRef]
- Siddiqui, V.U.; Ansari, A.; Ansari, M.T.; Akram, K.; Siddiqi, W.A. Fabrication of a Zinc Oxide/Alginate (ZnO/Alg) Bionanocomposite for Enhanced Dye Degradation and Its Optimization Study. RSC Adv. 2022, 12, 7210–7228. [Google Scholar] [CrossRef]
- Barikloo, H.; Ahmadi, E. Shelf Life Extension of Strawberry by Temperatures Conditioning, Chitosan Coating, Modified Atmosphere, and Clay and Silica Nanocomposite Packaging. Sci. Hortic. 2018, 240, 496–508. [Google Scholar] [CrossRef]
- Rangaraj, V.M.; Devaraju, S.; Rambabu, K.; Banat, F.; Mittal, V. Silver-Sepiolite (Ag-Sep) Hybrid Reinforced Active Gelatin/Date Waste Extract (DSWE) Blend Composite Films for Food Packaging Application. Food Chem. 2022, 369, 130983. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Extending Cheese Shelf-Life Using Eco-Friendly Sodium Alginate-Gelatin Films Reinforced with Nanoclay. Food Biosci. 2023, 56, 103304. [Google Scholar] [CrossRef]
- Dong, R.; Guo, B. Smart Wound Dressings for Wound Healing. Nano Today 2021, 41, 101290. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Antibiotic Eluting Clay Mineral (Laponite®) for Wound Healing Application: An in Vitro Study. J. Mater. Sci. Mater. Med. 2014, 25, 2513–2526. [Google Scholar] [CrossRef] [PubMed]
- Dutta, J.; Devi, N. Preparation, Optimization, and Characterization of Chitosan-Sepiolite Nanocomposite Films for Wound Healing. Int. J. Biol. Macromol. 2021, 186, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Devi, N.; Dutta, J. Preparation and Characterization of Chitosan-Bentonite Nanocomposite Films for Wound Healing Application. Int. J. Biol. Macromol. 2017, 104, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, H.; Hui, A.; Ding, J.; Liu, X.; Wang, A. Synergistic Effect of Glycyrrhizic Acid and Zno/Palygorskite on Improving Chitosan-Based Films and Their Potential Application in Wound Healing. Polymers 2021, 13, 3878. [Google Scholar] [CrossRef] [PubMed]
- Jaberifard, F.; Almajidi, Y.Q.; Arsalani, N.; Ghorbani, M. A Self-Healing Crosslinked-Xanthan Gum/Soy Protein Based Film Containing Halloysite Nanotube and Propolis with Antibacterial and Antioxidant Activity for Wound Healing. Int. J. Pharm. 2024, 656, 124073. [Google Scholar] [CrossRef] [PubMed]
- Kouser, S.; Sheik, S.; Prabhu, A.; Nagaraja, G.K.; Prashantha, K.; D’souza, J.N.; Navada, M.K.; Manasa, D.J. Effects of Reinforcement of Sodium Alginate Functionalized Halloysite Clay Nanotubes on Thermo-Mechanical Properties and Biocompatibility of Poly (Vinyl Alcohol) Nanocomposites. J. Mech. Behav. Biomed. Mater. 2021, 118, 104441. [Google Scholar] [CrossRef]
- Ghasemi Hamidabadi, H.; Rezvani, Z.; Nazm Bojnordi, M.; Shirinzadeh, H.; Seifalian, A.M.; Joghataei, M.T.; Razaghpour, M.; Alibakhshi, A.; Yazdanpanah, A.; Salimi, M.; et al. Chitosan-Intercalated Montmorillonite/Poly (Vinyl Alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells. ACS Appl. Mater. Interfaces 2017, 9, 11392–11404. [Google Scholar] [CrossRef]
- Gholizadeh, B.S.; Buazar, F.; Hosseini, S.M.; Mousavi, S.M. Enhanced Antibacterial Activity, Mechanical and Physical Properties of Alginate/Hydroxyapatite Bionanocomposite Film. Int. J. Biol. Macromol. 2018, 116, 786–792. [Google Scholar] [CrossRef]
- Shankar, S.; Teng, X.; Li, G.; Rhim, J.W. Preparation, Characterization, and Antimicrobial Activity of Gelatin/ZnO Nanocomposite Films. Food Hydrocoll. 2015, 45, 264–271. [Google Scholar] [CrossRef]
Biopolymer | Clay/Clay Mineral | Metal Nanoparticle | Key Findings | Ref. |
---|---|---|---|---|
Chitosan/alginate | Bentonite | ZnO | Flexible and transparent polymeric films; strong activity against S. aureus and P. aeruginosa; and epithelium regeneration in histological studies from in vivo wound healing. | [36] |
Alginate | Halloysite | ZnO | Great mechanical resistance, UV and water vapor barrier, and hydrophobicity and impressive activity against E. coli and L. monocytogenes. | [38] |
Chitosan | Nanoclay | ZnO | Biodegradable and effective film in preserving the quality of sweet cherries and excellent mechanical and barrier properties. | [82] |
Chitosan/PVA | Montmorillonite and halloysite | ZnO | Great mechanical resistance and oxygen and water vapor barrier; great effect against E. coli, S. aureus, S. enterica, and L. monocytogenes; and extension of food shelf life. | [83] |
Chitosan | Montmorillonite | ZnO | High mechanical response and great antimicrobial activity against S. aureus and E. coli. | [84] |
Chitosan | Kaolinite | ZnO/MnO2 | The synergistic effect between chitosan and nanoparticles obtained better results in biocompatibility and antibacterial activity against S. aureus and E. coli. | [85] |
Chitosan | Palygorskite | ZnO | Good transparency and remarkable tensile strength and excellent antibacterial activity against S. aureus and E. coli. | [86] |
Corn starch/gelatin/ bacterial nanocellulose | Halloysite | ZnO | Improved thermal stability and citocompability and antibacterial activity against S. aureus and E. coli. | [87] |
Chitosan | Palygorskite and montmorillonite | Ag Nps | The clay mineral mixture achieved better water resistance and mechanical, antioxidant, and antibacterial responses; the antibacterial effect against E. coli and S. aureus reached 100%. | [47] |
Chitosan | Laponite | Ag NPs | Low cytotoxicity; good mechanical properties; inhibition of the growth of S. aureus, E. coli, A. niger, and P. citrinum; and extends the storage time of food. | [66] |
Chitosan | Bentonite | Fe3O4 | Increased concentration of clay minerals decreases the release of curcumin; high cytotoxicity against human breast cancer cell lines (MCF-7 cells); and excellent activity against the growth of E. coli and S. aureus. | [88] |
Hydroxyethyl cellulose | Bentonite | Fe3O4 | Intercalation of polymer chains into clay spacing; reinforcement of polymer film due high density of the hydrogen-bonding network; and antifungal activity against C. albicans. | [89] |
Biopolymer | Clay/Clay Mineral | Essential Oil | Application | Ref. |
---|---|---|---|---|
Alginate | Montmorillonite | Clove, coriander, caraway, marjoram, cinnamon, and cumin | Active packaging | [44] |
Chitosan | Montmorillonite | Thyme | Active packaging | [49] |
Chitosan | Montmorillonite | Thyme | Shelf-life prolongation of sweet cherry | [82] |
Chitosan | Montmorillonite | Rosmarinus officinalis | Active bio-based films | [100] |
Chitosan | Montmorillonite | Rosmarinus officinalis | Shelf-life extension of poultry meat | [101] |
Chitosan | Montmorillonite | Ginger | Food packaging | [102] |
Chitosan | Montmorillonite | Ginger | Chilled beef preservation | [50] |
Starch | Montmorillonite | Carvacrol | Antimicrobial packaging material | [103] |
Cellulose | Montmorillonite | Origanum vulgare | Active films | [104] |
Gelatin | Montmorillonite | Black pepper | Active food packaging materials | [105] |
Alginate | Montmorillonite | Lemon | Active packaging | [106] |
Zein | Bentonite | Zataria multiflora Boiss | Bioactive packaging | [107] |
Cassava starch | Bentonite | Cinnamon | Edible and biodegradable film | [108] |
Levan | Bentonite | Calendula, citronella, lemon, tamanu, and peppermint | Biodegradable and antimicrobial active food packaging | [109] |
Chitosan | Halloysite | Clove | Antioxidant and antimicrobial food packaging | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trigueiro, P.; Pereira, J.P.d.L.; Ferreira, M.G.; Silva, L.B.; Neves, L.; Peña-Garcia, R.R. Clay Minerals and Biopolymers in Film Design: Overview of Properties and Applications. Minerals 2024, 14, 613. https://doi.org/10.3390/min14060613
Trigueiro P, Pereira JPdL, Ferreira MG, Silva LB, Neves L, Peña-Garcia RR. Clay Minerals and Biopolymers in Film Design: Overview of Properties and Applications. Minerals. 2024; 14(6):613. https://doi.org/10.3390/min14060613
Chicago/Turabian StyleTrigueiro, Pollyana, Juliane P. de L. Pereira, Mirelly G. Ferreira, Lucas B. Silva, Luan Neves, and Ramón R. Peña-Garcia. 2024. "Clay Minerals and Biopolymers in Film Design: Overview of Properties and Applications" Minerals 14, no. 6: 613. https://doi.org/10.3390/min14060613