Enhancing soil fertility and maize productivity is crucial for sustainable agriculture. This study aimed to evaluate the effects of tillage practices, nitrogen management strategies, and acidified hydrochar on soil fertility and maize productivity. The experiment used a randomized complete block design with split-split
[...] Read more.
Enhancing soil fertility and maize productivity is crucial for sustainable agriculture. This study aimed to evaluate the effects of tillage practices, nitrogen management strategies, and acidified hydrochar on soil fertility and maize productivity. The experiment used a randomized complete block design with split-split plot arrangement and four replications. Main plots received shallow tillage and deep tillage. Subplots were treated with nitrogen (120 kg ha
−1) from farmyard manure (FYM) and urea, including control, 33% FYM + 67% urea (M
U), and 80% FYM + 20% urea (M
F). Acidified hydrochar treatments H
0 (no hydrochar) and H
1 (with hydrochar, 2 t ha
−1) were applied to sub-sub plots. Deep tillage significantly increased plant height, biological yield, grain yield, ear length, grains ear
−1, thousand-grain weight, and nitrogen content compared to shallow tillage. M
U and M
F improved growth parameters and yield over the control. Hydrochar effects varied; H
1 enhanced yield components and soil properties such as soil organic matter and nitrogen availability compared to H
0. Canonical discriminant analysis linked deep tillage and M
U/M
F nitrogen management with improved yield and soil characteristics. In conclusion, deep tillage combined with integrated nitrogen management enhances maize productivity and soil properties. These findings highlight the importance of selecting appropriate tillage and nitrogen strategies for sustainable maize production along with hydrochar addition. These insights guide policymakers, agronomists, and agricultural extension services in adopting evidence-based strategies for sustainable agriculture, enhancing food production, and mitigating environmental impacts. The implication of this study suggests to undertake long-term application of hydrochar for further clarification and validation.
Full article