Comprehensive Cost–Benefit and Statistical Analysis of Isotherm and Kinetic Models for Heavy Metal Removal in Acidic Solutions Using Weakly Base Polymeric Chelating Resin as Adsorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymeric Bispicolamine Chelating Resin Preparation
2.2. Adsorption Studies
2.3. Statical Analysis and Its Appropriate Selection
2.4. Cost and Benefit Analysis
3. Results and Discussion
3.1. Kinetic Adsorption
3.2. Adsorption Isotherm
3.3. Statical Analysis and Its Appropriated Results
3.4. Social Cost–Benefit Analysis
3.5. The Significance of the Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Xiaomei, L.; Qitang, W.; Banks, M.K. Effect of simultaneous establishment of sedum alfredii and zea mays on heavy metal accumulation in plants. Int. J. Phytoremediat. 2005, 7, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sultana, K.W.; Ndhlala, A.R.; Mondal, M.; Chandra, I. Heavy metal pollution in the environment and its impact on health: Exploring green technology for remediation. Environ. Health Insights 2023, 17, 11786302231201259. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Karki, B.K.; Lamichhane, K.; Joshi, L.; Kc, R.; Sah, M.K.; Pathak, M.; Karki, K.R. Risk assessment of heavy metals in the major surface water system of Nepal with potential remediation technologies. Environ. Chall. 2024, 14, 100865. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Osman, A.I.; Hosny, M.; Elgarahy, A.M.; Eltaweil, A.S.; Rooney, D.W.; Chen, Z.; Rahim, N.S.; Sekar, M.; Gopinath, S.C.B.; et al. The toxicity of mercury and its chemical compounds: Molecular mechanisms and environmental and human health implications: A comprehensive review. ACS Omega 2024, 9, 5100–5126. [Google Scholar] [CrossRef]
- Maddela, N.R.; García, L.C. Innovations in Biotechnology for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Noman, M.A.; Feng, W.; Zhu, G.; Hossain, M.B.; Chen, Y.; Zhang, H.; Sun, J. Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China. Sci. Rep. 2022, 12, 4634. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, Y.; Wen, D.; Peng, J.; Zhao, L.; Zhai, M. Recent progress in environmental applications of functional adsorbent prepared by radiation techniques: A review. J. Hazard. Mater. 2022, 424, 126887. [Google Scholar] [CrossRef]
- Wongphat, A.; Wongcharee, S.; Chaiduangsri, N.; Suwannahong, K.; Kreetachat, T.; Imman, S.; Suriyachai, N.; Hongthong, S.; Phadee, P.; Thanarat, P.; et al. Using excel solver’s parameter function in predicting and interpretation for kinetic adsorption model via batch sorption: Selection and statistical analysis for basic dye removal onto a novel magnetic nanosorbent. ChemEngineering 2024, 8, 58. [Google Scholar] [CrossRef]
- Biswas, S.; Fatema, J.; Debnath, T.; Rashid, T.U. Chitosan–clay composites for wastewater treatment: A state-of-the-art review. ACS ES&T Water 2021, 1, 1055–1085. [Google Scholar] [CrossRef]
- Arif, M.; Liu, G.; Yousaf, B.; Ahmed, R.; Irshad, S.; Ashraf, A.; Zia-ur-Rehman, M.; Rashid, M.S. Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal—A review. J. Clean. Prod. 2021, 310, 127548. [Google Scholar] [CrossRef]
- Vishnu, D.; Dhandapani, B.; Kannappan Panchamoorthy, G.; Vo, D.-V.N.; Ramakrishnan, S.R. Comparison of surface-engineered superparamagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: A review. Environ. Chem. Lett. 2021, 19, 3181–3208. [Google Scholar] [CrossRef]
- Hongthong, S.; Sangsida, W.; Wongcharee, S.; Chanthakhot, A.; Aungthitipan, P.; Suwannahong, K.; Kreetachat, T.; Rioyo, J. Enhanced biochar production via co-pyrolysis of biomass residual with plastic waste after recycling process. Int. J. Chem. Eng. 2024, 2024, 1176275. [Google Scholar] [CrossRef]
- Worasith, N.; Goodman, B.A. Clay mineral products for improving environmental quality. Appl. Clay Sci. 2023, 242, 106980. [Google Scholar] [CrossRef]
- Zagorodni, A.A. Ion Exchange Materials: Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Suwannahong, K.; Sirilamduan, C.; Deepatana, A.; Kreetachat, T.; Wongcharee, S. Characterization and optimization of polymeric bispicolamine chelating resin: Performance evaluation via rsm using copper in acid liquors as a model substrate through ion exchange method. Molecules 2022, 27, 7210. [Google Scholar] [CrossRef] [PubMed]
- Megia-Fernandez, A.; Ortega-Muñoz, M.; Lopez-Jaramillo, J.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F. Non-Magnetic and Magnetic Supported Copper(I) Chelating adsorbents as efficient heterogeneous catalysts and copper scavengers for click chemistry. Adv. Synth. Catal. 2010, 352, 3306–3320. [Google Scholar] [CrossRef]
- Tambovceva, T.T.; Melnyk, L.H.; Dehtyarova, I.B.; Nikolaev, S. Circular economy: Tendencies and development perspectives. Mech. Econ. Regul. 2021, 2, 33–42. [Google Scholar] [CrossRef]
- Hagelüken, C.; Goldmann, D. Recycling and circular economy—Towards a closed loop for metals in emerging clean technologies. Miner. Econ. 2022, 35, 539–562. [Google Scholar] [CrossRef]
- Obaideen, K.; Shehata, N.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Olabi, A.G. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Suwannahong, K.; Wongcharee, S.; Rioyo, J.; Sirilamduan, C.; Kreetachart, T. Insight into molecular weight cut off characteristics and reduction of melanoidin using microporous and mesoporous adsorbent. Eng. Appl. Sci. Res. 2022, 49, 48–57. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Rajahmundry, G.K.; Garlapati, C.; Kumar, P.S.; Alwi, R.S.; Vo, D.-V.N. Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 2021, 276, 130176. [Google Scholar] [CrossRef]
- Sodeifian, G.; Garlapati, C.; Hazaveie, S.M.; Sodeifian, F. Solubility of 2,4,7-triamino-6-phenylpteridine (triamterene, diuretic drug) in supercritical carbon dioxide: Experimental data and modeling. J. Chem. Eng. Data 2020, 65, 4406–4416. [Google Scholar] [CrossRef]
- Aynur, D. Evaluation of chrome vi removal with biological adsorption in business organization liability: Social benefit-cost analysis. Acad. J. Sci. 2012, 1, 67–73. [Google Scholar]
- Galtry, J. Suckling and Silence in the USA: The Costs and Benefits of Breastfeeding. Fem. Econ. 1997, 3, 1–24. [Google Scholar] [CrossRef]
- Demir, A.; Arisoy, M. Biological and chemical removal of Cr(VI) from waste water: Cost and benefit analysis. J. Hazard. Mater. 2007, 147, 275–280. [Google Scholar] [CrossRef]
- Cui, X.; Li, H.; Yao, Z.; Shen, Y.; He, Z.; Yang, X.; Ng, H.Y.; Wang, C.-H. Removal of nitrate and phosphate by chitosan composited beads derived from crude oil refinery waste: Sorption and cost-benefit analysis. J. Clean. Prod. 2019, 207, 846–856. [Google Scholar] [CrossRef]
- Mishan, E.J.; Quah, E. Cost-Benefit Analysis; Taylor & Francis: Abingdon, UK, 2020. [Google Scholar]
- George William, K.; Serkan, E.; Atakan, Ö.; Özcan, H.K.; Serdar, A. Modelling of adsorption kinetic processes—Errors, theory and application. In Advanced Sorption Process Applications; Serpil, E., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 10. [Google Scholar]
- Florio, M. Applied Welfare Economics: Cost-Benefit Analysis of Projects and Policies; Taylor & Francis: Abingdon, UK, 2014. [Google Scholar]
- Campbell, H.F.; Brown, R.P.C. Cost-Benefit Analysis: Financial and Economic Appraisal Using Spreadsheets; Taylor & Francis: Abingdon, UK, 2015. [Google Scholar]
- Largergren, S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Bergmann, C.P.; Machado, F.M. Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Aharoni, C.; Tompkins, F.C. Kinetics of adsorption and desorption and the elovich equation. In Advances in Catalysis; Eley, D.D., Selwood, P.W., Weisz, P.B., Eds.; Academic Press: Cambridge, MA, USA, 1970; Volume 21, pp. 1–49. [Google Scholar] [CrossRef]
- Juang, R.-S.; Chen, M.-L. Application of the elovich equation to the kinetics of metal sorption with solvent-impregnated resins. Ind. Eng. Chem. Res. 1997, 36, 813–820. [Google Scholar] [CrossRef]
- Sutherland, C.; Venkobachar, C. A diffusion-chemisorption kinetic model for simulating biosorption using forest macro-fungus, fomes fasciatus. Int. Res. J. Plant Sci. 2010, 1, 107–117. [Google Scholar]
- Cardoso, N.F.; Lima, E.C.; Pinto, I.S.; Amavisca, C.V.; Royer, B.; Pinto, R.B.; Alencar, W.S.; Pereira, S.F. Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J. Environ. Manag. 2011, 92, 1237–1247. [Google Scholar] [CrossRef]
- Temkin, M.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS 1940, 12, 217–222. [Google Scholar]
- Harkins, W.D.; Jura, G. The decrease of free surface energy as a basis for the development of equations for adsorption isotherms; and the existence of two condensed phases in films on solid. J. Chem. Phys. 1944, 12, 112. [Google Scholar] [CrossRef]
- Jovanović, D. Physical adsorption of gases: I: Isotherms for monolayer and multilayer adsorption. Kolloid-Z. Und Z. Für Polym. 1969, 235, 1203–1213. [Google Scholar] [CrossRef]
- Tóth, J. A uniform interpretation of gas/solid adsorption. J. Colloid Interface Sci. 1981, 79, 85–95. [Google Scholar] [CrossRef]
- Rashid, T.U.; Kabir, S.M.F.; Biswas, M.C.; Bhuiyan, M.A.R. Sustainable wastewater treatment via dye–surfactant interaction: A critical review. Ind. Eng. Chem. Res. 2020, 59, 9719–9745. [Google Scholar] [CrossRef]
Model | Parameter | Cu2+ | Ni2+ |
---|---|---|---|
PFO [37] | |||
qe (mg g−1) | 44.5638 | 35.7999 | |
k1 (min−1) | 0.1403 | 0.0557 | |
R2adj | 0.9718 | 0.9867 | |
Reduced χ2 | 4.1769 | 1.6256 | |
SSE | 54.3001 | 21.1330 | |
PSO [38] | |||
qe (mg g−1) | 47.1159 | 39.3801 | |
k2 (g mg−1 min−1) | 0.0053 | 0.0020 | |
R2adj | 0.9989 | 0.9859 | |
Reduced χ2 | 0.1577 | 1.7245 | |
SSE | 2.0503 | 22.4187 | |
General (rational) order [39] | |||
qe (mg g−1) | 47.4304 | 36.6441 | |
kr [h−1 (g mg−1)n−1] | 0.0039 | 0.0188 | |
n | 2.0888 | 1.3477 | |
R2adj | 0.9989 | 0.9902 | |
Reduced χ2 | 0.1606 | 1.1994 | |
SSE | 1.9267 | 14.3923 | |
Elovich [40,41] | |||
αe (mg g−1 min−1) | 859.5738 | 11.6502 | |
βe (g mg−1) | 0.2202 | 0.1528 | |
R2adj | 0.9700 | 0.9409 | |
Reduced χ2 | 4.4300 | 7.2262 | |
SSE | 57.5904 | 93.9404 | |
Diffusion chemisorption [42] | |||
qe (mg g−1) | 53.2206 | 52.0400 | |
kDC (mg g−1 min−0.5) | 29.5835 | 9.9001 | |
R2adj | 0.9881 | 0.9492 | |
Reduced χ2 | 1.7675 | 6.2157 | |
SSE | 22.9777 | 80.8049 | |
Avrami fractional order [43] | |||
qe (mg g−1) | 44.5634 | 35.9428 | |
kav (min−1) | 0.1112 | 0.5432 | |
nav | 1.2621 | 0.0986 | |
R2adj | 0.9694 | 0.9998 | |
Reduced χ2 | 4.5250 | 0.7914 | |
SSE | 54.3001 | 9.4965 |
Model | Parameter | Cu2+ | Ni2+ |
---|---|---|---|
Freundlich | |||
kf (mg g−1)(L g−1)n | 17.0593 | 10.8396 | |
nf | 3.7965 | 3.5675 | |
1/nf | 0.2634 | 0.2803 | |
R2adj | 0.8582 | 0.9045 | |
Reduced χ2 | 46.5335 | 17.1315 | |
SSE | 418.8013 | 154.1836 | |
Langmuir | |||
qm (mg g−1) | 47.9184 | 36.4825 | |
kl (L MB−1 mg−1) | 0.4556 | 0.2233 | |
Rl | 0.0215 | 0.0429 | |
R2adj | 0.9742 | 0.9925 | |
Reduced χ2 | 8.4493 | 1.3477 | |
SSE | 76.0442 | 12.1293 | |
Temkin [44] | |||
bt (J mol−1) | 0.7815 | 6.4899 | |
kt (L mol−1) | 2.2372 | 3.3449 | |
R2adj | 0.9375 | 0.9648 | |
Reduced χ2 | 20.5152 | 6.3223 | |
SSE | 184.6371 | 56.9039 | |
Harkin–Jura [45] | |||
aH | 110.4031 | 79.5571 | |
bH | 2.8917 | 2.9862 | |
R2adj | 0.7823 | 0.8332 | |
Reduced χ2 | 71.4453 | 29.9164 | |
SSE | 643.0076 | 269.2474 | |
Jovanovic [46] | |||
qm (mg g−1) | 44.0896 | 33.1401 | |
kj | 0.3787 | 0.1774 | |
R2adj | 0.9775 | 0.9929 | |
Reduced χ2 | 7.3995 | 1.2638 | |
SSE | 66.5658 | 11.3739 | |
Toth [47] | |||
qm (mg g−1) | 44.7519 | 34.4145 | |
kth | 0.3379 | 0.1742 | |
nth | 1.7365 | 1.42925 | |
R2 | 0.9802 | 0.9953 | |
Reduced χ2 | 6.5108 | 0.8381 | |
SSE | 52.0867 | 6.7047 |
Models | N | K | SSE | AIC | AICcorrected |
---|---|---|---|---|---|
Kinetic adsorption models | |||||
PFO | 15 | 2 | 54.30 | 23.30 | 24.30 |
PSO | 15 | 2 | 2.05 | −25.85 | −24.85 |
General (rational) order | 15 | 3 | 1.93 | −24.76 | −22.58 |
Elovich | 15 | 2 | 57.59 | 24.18 | 25.18 |
Avrami fractional order | 15 | 3 | 54.30 | 25.30 | 27.48 |
Diffusion chemisorption | 15 | 2 | 22.98 | 10.40 | 11.40 |
Adsorption isotherm models | |||||
Freundlich | 11 | 2 | 418.80 | 44.03 | 45.53 |
Langmuir | 11 | 2 | 76.04 | 25.27 | 26.77 |
Temkin | 11 | 2 | 184.64 | 35.03 | 36.53 |
Harkin–Jara | 11 | 2 | 643.01 | 48.75 | 50.25 |
Jovanovic | 11 | 2 | 66.60 | 23.81 | 25.31 |
Toth | 11 | 3 | 52.09 | 23.11 | 26.53 |
Models | N | K | SSE | AIC | AICcorrected |
---|---|---|---|---|---|
Kinetic adsorption models | |||||
PFO | 15 | 2 | 21.13 | 9.14 | 10.14 |
PSO | 15 | 2 | 22.42 | 10.02 | 11.03 |
General (rational) order | 15 | 3 | 14.39 | 5.38 | 7.56 |
Elovich | 15 | 2 | 93.94 | 31.52 | 32.52 |
Avrami fractional order | 15 | 3 | 1.57761 × 10−10 | −373.17 | −370.99 |
Diffusion chemisorption | 15 | 2 | 80.81 | 29.26 | 30.26 |
Adsorption isotherm models | |||||
Freundlich | 11 | 2 | 154.18 | 33.04 | 34.54 |
Langmuir | 11 | 2 | 12.135 | 5.08 | 6.58 |
Temkin | 11 | 2 | 56.90 | 22.08 | 23.58 |
Harkin–Jara | 11 | 2 | 269.25 | 39.18 | 40.68 |
Jovanovic | 11 | 2 | 11.37 | 4.36 | 5.86 |
Toth | 11 | 3 | 6.70 | 0.55 | 3.97 |
Chemical Name Used | Cu2+ | Ni2+ | ||
---|---|---|---|---|
Amont of Chemical Used (g or L) | Current Cost (2024, THB or USD) | Amont of Chemical Used (g or L) | Current Cost (2024, THD or USD) | |
Sodium hydroxide (5 mol L−1, >97%, Panreac) | Average 0.001 | THB 0.98, USD 0.027 | Average 0.001 | THB 0.98, USD 0.027 |
Acetic acid (99.99%, AR grade, Ajex Finechem) | Average 0.002 | THB 0.73, USD 0.020 | Average 0.002 | THB 0.73, USD 0.020 |
Dowex M4195 (Sigma-Aldrich) | Fixed 0.1 | THB 16.60, USD 0.47 | Fixed 0.1 | THB 16.60, USD 0.47 |
Total cost (THB) | - | 18.31 | - | 18.31 |
Total cost (USD) | - | 0.517 | - | 0.517 |
Model and cost analysis | Maximum adsorption (Cu2+ and Ni2+ removal) | |||
Kinetic adsorption | 46.02 mg g−1 (B, Benefit = 46.02) | 36.03 mg g−1 (B, Benefit = 36.03) | ||
Adsorption isotherm | 44.37 mg g−1 (B, Benefit = 44.37) | 32.86 mg g−1 (B, Benefit = 32.86) | ||
B/C Kinetic | 46.02/18.31 = 2.513 (Baht) | 36.03/18.31 = 1.967 (Baht) | ||
B/C Isotherm | 44.37/18.31 = 2.423 (Baht) | 32.86/18.31 = 1.795 (Baht) | ||
(net socail benefit) kinetic and isotherm | 18.31 − (18.31/5) = 14.648 (baht) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannahong, K.; Wongcharee, S.; Kreetachat, T.; Imman, S.; Suriyachai, N.; Hongthong, S.; Rioyo, J.; Dechapanya, W.; Noiwimol, P. Comprehensive Cost–Benefit and Statistical Analysis of Isotherm and Kinetic Models for Heavy Metal Removal in Acidic Solutions Using Weakly Base Polymeric Chelating Resin as Adsorbent. Water 2024, 16, 2384. https://doi.org/10.3390/w16172384
Suwannahong K, Wongcharee S, Kreetachat T, Imman S, Suriyachai N, Hongthong S, Rioyo J, Dechapanya W, Noiwimol P. Comprehensive Cost–Benefit and Statistical Analysis of Isotherm and Kinetic Models for Heavy Metal Removal in Acidic Solutions Using Weakly Base Polymeric Chelating Resin as Adsorbent. Water. 2024; 16(17):2384. https://doi.org/10.3390/w16172384
Chicago/Turabian StyleSuwannahong, Kowit, Surachai Wongcharee, Torpong Kreetachat, Saksit Imman, Nopparat Suriyachai, Sukanya Hongthong, Javier Rioyo, Wipada Dechapanya, and Pakpilai Noiwimol. 2024. "Comprehensive Cost–Benefit and Statistical Analysis of Isotherm and Kinetic Models for Heavy Metal Removal in Acidic Solutions Using Weakly Base Polymeric Chelating Resin as Adsorbent" Water 16, no. 17: 2384. https://doi.org/10.3390/w16172384