Dynamics and Drivers of Water Clarity Derived from Landsat and In-Situ Measurement Data in Hulun Lake from 2010 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Water Extraction Methods
2.3.2. Inversion Model Development Methods
2.3.3. Spatial Trend Analysis Methods
2.3.4. Transparency Estimation Model
Selection of Landsat Spectral Bands
Development and Validation of Transparency Estimation Algorithms
3. Results
3.1. Transparency Mapping and Statistics
3.1.1. Temporal Characteristics of Transparency
3.1.2. Spatial Pattern of Transparency
3.2. Drivers of Transparency Variation
3.2.1. Climate Factors
3.2.2. Human Activities
4. Discussion
4.1. Transparency Characteristics of Hulun Lake
4.2. Uncertainty of Transparency Inversion Model
4.3. Further Research
5. Conclusions
- (1)
- Based on in situ measured data, we found that B3/(B1 + B4) [red/(blue-NIR)] was the most sensitive parameter for transparency (R = 0.84) and the exponential model was the most suitable SDD satellite algorithm for Hulun Lake (R2 = 0.665, RMSE = 0.055 m, MAE = 0.003 m);
- (2)
- During the study period, the annual mean SDD of Lake Hulun was higher in summer than in autumn. There were fluctuations in SDD in both summer and autumn, indicating that SDD was influenced by climatic and anthropogenic factors. The SDD showed a decreasing trend in summer (−0.035 m/decade) and an increasing trend in autumn (0.052 m/decade). In the littoral zones of Hulun Lake, SDD was lower than in the central region. In addition, the SDD in the northeastern part of Hulun Lake was lower than that in the southwestern part;
- (3)
- Precipitation and wind speed were highly correlated with changes in SDD, particularly cumulative precipitation and mean wind speed over a week (starting at the time of image acquisition). In contrast, the relationship between temperature and SDD variation was not significant. In addition, the expansion of cropland and impervious surfaces in the Klulun River basin was the possible cause of the low SDD at the entrance to the Hulun Lake flow.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Band | R | Band | R | Band | R | Band | R | Band | R |
---|---|---|---|---|---|---|---|---|---|
B1 | −0.53 | lnB2 − lnB4 | 0.40 | B3/(B3 + B4) | 0.61 | B6/(B4 + B5) | 0.59 | b4 * (b2 − b5)/(b2 * b5) | −0.59 |
B2 | −0.717 * | lnB2 − lnB5 | −0.32 | B3/(B3 + B5) | 0.41 | B6/(B4 + B6) | 0.44 | b6 * (b2 − b5)/(b2 * b5) | −0.55 |
B3 | −0.26 | lnB2 − lnB6 | −0.18 | B3/(B3 + B6) | 0.00 | B6/(B5 + B6) | 0.43 | b1 * (b2 − b6)/(b2 * b6) | −0.12 |
B4 | −0.675 * | lnB3 − lnB4 | 0.60 | B3/(B4 + B5) | 0.769 * | b1 − b2 | 0.35 | b3 * (b2 − b6)/(b2 * b6) | 0.02 |
B5 | −0.41 | lnB3 − lnB5 | −0.16 | B3/(B4 + B6) | 0.48 | b1 − b3 | −0.61 | b4 * (b2 − b6)/(b2 * b6) | −0.11 |
B6 | −0.12 | lnB3 − lnB6 | 0.02 | B3/(B5 + B6) | 0.44 | b1 − b4 | −0.01 | b5 * (b2 − b6)/(b2 * b6) | −0.33 |
B1/B2 | −0.18 | lnB4 − lnB5 | −0.46 | B4/(B1 + B2) | −0.33 | b1 − b5 | −0.33 | b1 * (b3 − b4)/(b3 * b4) | 0.36 |
B1/B3 | −0.62 | lnB4 − lnB6 | −0.42 | B4/(B1 + B3) | −0.46 | b1 − b6 | −0.49 | b2 * (b3 − b4)/(b3 * b4) | 0.50 |
B1/B4 | 0.17 | lnB5 − lnB6 | 0.36 | B4/(B1 + B4) | −0.18 | b2 − b3 | −0.728 * | b5 * (b3 − b4)/(b3 * b4) | −0.12 |
B1/B5 | −0.55 | B1/(B1 + B2) | −0.17 | B4/(B1 + B5) | −0.02 | b2 − b4 | −0.33 | b6 * (b3 − b4)/(b3 * b4) | 0.62 |
B1/B6 | −0.12 | B1/(B1 + B3) | −0.63 | B4/(B1 + B6) | −0.28 | b2 − b5 | −0.49 | b1 * (b3 − b5)/(b3 * b5) | −0.55 |
B2/B3 | 0.667 * | B1/(B1 + B4) | 0.18 | B4/(B2 + B3) | −0.54 | b2 − b6 | −0.694 * | b2 * (b3 − b5)/(b3 * b5) | −0.55 |
B2/B4 | 0.37 | B1/(B1 + B5) | 0.35 | B4/(B2 + B4) | −0.41 | b3 − b4 | 0.41 | b4 * (b3 − b5)/(b3 * b5) | −0.59 |
B2/B5 | −0.56 | B1/(B1 + B6) | −0.27 | B4/(B2 + B5) | −0.25 | b3 − b5 | 0.00 | b6 * (b3 − b5)/(b3 * b5) | −0.54 |
B2/B6 | −0.11 | B1/(B2 + B3) | −0.42 | B4/(B2 + B6) | −0.48 | b3 − b6 | −0.23 | b1 * (b3 − b6)/(b3 * b6) | −0.10 |
B3/B4 | 0.58 | B1/(B2 + B4) | 0.00 | B4/(B3 + B4) | −0.61 | b4 − b5 | −0.34 | b2 * (b3 − b6)/(b3 * b6) | −0.10 |
B3/B5 | −0.53 | B1/(B2 + B5) | 0.01 | B4/(B3 + B5) | −0.43 | b4 − b6 | −0.698 * | b4 * (b3 − b6)/(b3 * b6) | −0.36 |
B3/B6 | 0.04 | B1/(B2 + B6) | −0.18 | B4/(B3 + B6) | −0.65 | b5 − b6 | −0.36 | b5 * (b3 − b6)/(b3 * b6) | −0.32 |
B4/B5 | −0.59 | B1/(B3 + B4) | −0.28 | B4/(B4 + B5) | 0.29 | b3 * (b1 − b2)/(b1 * b2) | −0.39 | b1 * (b4 − b5)/(b4 * b5) | −0.56 |
B4/B6 | −0.40 | B1/(B3 + B5) | −0.42 | B4/(B4 + B6) | −0.44 | b4 * (b1 − b2)/(b1 * b2) | 0.02 | b2 * (b4 − b5)/(b4 * b5) | −0.56 |
B5/B6 | −0.33 | B1/(B3 + B6) | −0.58 | B4/(B5 + B6) | 0.22 | b5 * (b1 − b2)/(b1 * b2) | 0.33 | b3 * (b4 − b5)/(b4 * b5) | −0.54 |
B2/B1 | 0.19 | B1/(B4 + B5) | 0.37 | B5/(B1 + B2) | 0.09 | b6 * (b1 − b2)/(b1 * b2) | −0.28 | b6 * (b4 − b5)/(b4 * b5) | −0.55 |
B3/B1 | 0.63 | B1/(B4 + B6) | 0.09 | B5/(B1 + B3) | 0.15 | b2 * (b1 − b3)/(b1 * b3) | −0.58 | b1 * (b4 − b6)/(b4 * b6) | −0.15 |
B4/B1 | −0.20 | B1/(B5 + B6) | 0.31 | B5/(B1 + B4) | 0.08 | b4 * (b1 − b3)/(b1 * b3) | −0.40 | b2 * (b4 − b6)/(b4 * b6) | −0.15 |
B5/B1 | −0.33 | B2/(B1 + B2) | 0.17 | B5/(B1 + B5) | 0.06 | b5 * (b1 − b3)/(b1 * b3) | 0.12 | b3 * (b4 − b6)/(b4 * b6) | −0.03 |
B6/B1 | 0.28 | B2/(B1 + B3) | −0.34 | B5/(B1 + B6) | 0.09 | b6 * (b1 − b3)/(b1 * b3) | −0.52 | b4 * (b4 − b6)/(b4 * b6) | −0.40 |
B3/B2 | 0.64 | B2/(B1 + B4) | 0.56 | B5/(B2 + B3) | 0.12 | b2 * (b1 − b4)/(b1 * b4) | 0.22 | b1 * (b5 − b6)/(b5 * b6) | 0.57 |
B4/B2 | −0.43 | B2/(B1 + B5) | 0.34 | B5/(B2 + B4) | 0.07 | b3 * (b1 − b4)/(b1 * b4) | 0.30 | b2 * (b5 − b6)/(b5 * b6) | 0.56 |
B5/B2 | −0.32 | B2/(B1 + B6) | 0.11 | B5/(B2 + B5) | 0.05 | b5 * (b1 − b4)/(b1 * b4) | −0.11 | b3 * (b5 − b6)/(b5 * b6) | 0.56 |
B6/B2 | 0.24 | B2/(B2 + B3) | −0.66 | B5/(B2 + B6) | 0.07 | b6 * (b1 − b4)/(b1 * b4) | 0.34 | b4 * (b5 − b6)/(b5 * b6) | 0.57 |
B4/B3 | −0.63 | B2/(B2 + B4) | 0.41 | B5/(B3 + B4) | 0.15 | b2 * (b1 − b5)/(b1 * b5) | −0.56 | (b1 − b2)/(B1 + B2) | −0.17 |
B5/B3 | −0.40 | B2/(B2 + B5) | 0.34 | B5/(B3 + B5) | 0.14 | b3 * (b1 − b5)/(b1 * b5) | −0.54 | (b1 − b3)/(B1 + B3) | −0.63 |
B6/B3 | 0.01 | B2/(B2 + B6) | −0.22 | B5/(B3 + B6) | 0.17 | b4 * (b1 − b5)/(b1 * b5) | −0.59 | (b1 − b4)/(B1 + B4) | 0.18 |
B5/B4 | −0.25 | B2/(B3 + B4) | −0.31 | B5/(B4 + B5) | 0.00 | b6 * (b1 − b5)/(b1 * b5) | −0.55 | (b1 − b5)/(B1 + B5) | 0.35 |
B6/B4 | 0.44 | B2/(B3 + B5) | −0.27 | B5/(B4 + B6) | 0.05 | b2 * (b1 − b6)/(b1 * b6) | −0.12 | (b1 − b6)/(B1 + B6) | −0.26 |
B6/B5 | −0.55 | B2/(B3 + B6) | −0.667 * | B5/(B5 + B6) | −0.09 | b3 * (b1 − b6)/(b1 * b6) | 0.01 | (b2 − b3)/(B2 + B3) | −0.65 |
ln(B1) | −0.54 | B2/(B4 + B5) | 0.60 | B6/(B1 + B2) | 0.26 | b4 * (b1 − b6)/(b1 * b6) | −0.37 | (b2 − b4)/(B2 + B4) | 0.41 |
ln(B2) | −0.714 * | B2/(B4 + B6) | 0.23 | B6/(B1 + B3) | 0.13 | b5 * (b1 − b6)/(b1 * b6) | −0.33 | (b2 − b5)/(B2 + B5) | 0.34 |
ln(B3) | −0.25 | B2/(B5 + B6) | 0.35 | B6/(B1 + B4) | 0.34 | b1 * (b2 − b3)/(b2 * b3) | −0.710 * | (b2 − b6)/(B2 + B6) | −0.24 |
ln(B4) | −0.66 | B3/(B1 + B2) | 0.728 * | B6/(B1 + B5) | 0.37 | b4 * (b2 − b3)/(b2 * b3) | −0.710 * | (b3 − b4)/(B3 + B4) | 0.61 |
ln(B5) | 0.18 | B3/(B1 + B3) | 0.63 | B6/(B1 + B6) | 0.27 | b5 * (b2 − b3)/(b2 * b3) | −0.64 | (b3 − b5)/(B3 + B5) | 0.41 |
ln(B6) | −0.11 | B3/(B1 + B4) | 0.841 ** | B6/(B2 + B3) | 0.13 | b6 * (b2 − b3)/(b2 * b3) | −0.58 | (b3 − b6)/(B3 + B6) | −0.01 |
lnB1 − lnB2 | −0.17 | B3/(B1 + B5) | 0.64 | B6/(B2 + B4) | 0.33 | b1 * (b2 − b4)/(b2 * b4) | 0.23 | (b4 − b5)/(B4 + B5) | 0.28 |
lnB1 − lnB3 | −0.64 | B3/(B1 + B6) | 0.692 * | B6/(B2 + B5) | 0.33 | b3 * (b2 − b4)/(b2 * b4) | 0.52 | (b4 − b6)/(B4 + B6) | −0.43 |
lnB1 − lnB4 | 0.18 | B3/(B2 + B3) | 0.66 | B6/(B2 + B6) | 0.22 | b5 * (b2 − b4)/(b2 * b4) | −0.20 | (b5 − b6)/(B5 + B6) | −0.43 |
lnB1 − lnB5 | −0.27 | B3/(B2 + B4) | 0.672 * | B6/(B3 + B4) | 0.15 | b6 * (b2 − b4)/(b2 * b4) | 0.52 | ||
lnB1 − lnB6 | −0.20 | B3/(B2 + B5) | 0.745 * | B6/(B3 + B5) | 0.15 | b1 * (b2 − b5)/(b2 * b5) | −0.55 | ||
lnB2 − lnB3 | −0.65 | B3/(B2 + B6) | 0.61 | B6/(B3 + B6) | 0.00 | b3 * (b2 − b5)/(b2 * b5) | −0.54 |
Season | Summer | Autumn | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SDE Parameters | SDE_max | SDE_min | SDE_max | SDE_min | ||||||||
La(m) | Sa(m) | MCen_max | La(m) | Sa(m) | MCen_min | La(m) | Sa(m) | MCen_max | La(m) | Sa(m) | MCen_min | |
2010 | 26,226.3 | 10,048.7 | (117.44, 48.99) | 30,703.8 | 12,195.4 | (117.36, 48.96) | 30,006.7 | 10,883.9 | (117.48, 49.08) | 23,159.5 | 10,455.3 | (117.38, 48.93) |
2011 | 26,662.2 | 10,871.6 | (117.44, 49.02) | 27,567.4 | 10,621.4 | (117.37, 48.93) | 31,164.1 | 12,098 | (117.42, 48.97) | 25,350.6 | 9924.6 | (117.41, 48.99) |
2012 | 27,465.7 | 10,765 | (117.39, 48.98) | 28,150.7 | 11,007.9 | (117.45, 48.99) | 23,438.9 | 9316 | (117.39, 48.97) | 33,272.2 | 12,118.9 | (117.45, 49.00) |
2013 | 25,227.4 | 9445.9 | (117.41, 48.96) | 37,808.8 | 12,291.1 | (117.41, 49.00) | 28,764.6 | 11,942.9 | (117.37, 48.95) | 30,586.2 | 9860.3 | (117.44, 48.97) |
2014 | 27,143.6 | 8937.9 | (117.42, 48.92) | 34,571 | 12,218.7 | (117.37, 49.00) | 25,636.7 | 9873.2 | (117.40, 48.97) | 40,165.3 | 14,343.8 | (117.39, 48.93) |
2015 | 29,653.4 | 11,603.5 | (117.38, 48.94) | 33,184.4 | 11,793.4 | (117.45, 48.98) | 28,702.3 | 10,298.4 | (117.41, 48.95) | 37,794.1 | 15,095.7 | (117.35, 48.98) |
2016 | 28,542.6 | 12,137.6 | (117.38, 48.90) | 30,551.6 | 10,317.3 | (117.43, 49.03) | 15,041.5 | 12,699.4 | (117.25, 48.79) | 24,103.5 | 10,860.5 | (117.48, 49.05) |
2017 | 30,149.1 | 12,722.8 | (117.31, 48.90) | 25,505.9 | 8891.6 | (117.51, 49.02) | 33,220.4 | 13,654.3 | (117.33, 48.90) | 28,628.7 | 10,405.2 | (117.43, 48.98) |
2018 | 28,728.7 | 10,353.7 | (117.36, 48.94) | 33,495.1 | 11,987.1 | (117.51, 48.97) | 26,063.6 | 9864.7 | (117.41, 48.98) | 37,805.1 | 12,848.9 | (117.37, 48.89) |
2019 | 16,006.2 | 11,509.5 | (117.21, 48.80) | 22,158.6 | 10,537.8 | (117.51, 49.04) | 29,331.4 | 11,011.9 | (117.42, 48.98) | 31,270.5 | 12,884.2 | (117.37, 48.90) |
2020 | 28,941.4 | 11,176.2 | (117.34, 48.90) | 27,361.9 | 12,387.9 | (117.50, 49.03) | 28,881.3 | 11,585.7 | (117.38, 48.95) | 40,184.2 | 11,445.4 | (117.52, 48.99) |
TEMP (°C) | PRCP (inch) | WDSP (m/s) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Three-Day | One-Week | One-Month | Two-Month | One-Day | Three-Day | One-Week | Two-Week | One-Day | Three-Day | One-Week | Two-Week | ||
2010 | Su | 32.22 | 28.93 | 22.42 | 17.80 | 0.00 | 0.00 | 0.00 | 0.00 | 5.00 | 5.07 | 4.80 | 5.54 |
Au | 7.15 | 5.97 | 13.36 | 16.14 | 0.00 | 0.00 | 0.10 | 0.25 | 6.30 | 5.40 | 7.56 | 7.14 | |
2011 | Su | 23.46 | 20.91 | 16.38 | 12.90 | 0.00 | 0.00 | 0.01 | 0.02 | 5.10 | 4.70 | 4.90 | 4.98 |
Au | 13.46 | 12.90 | 13.64 | 17.72 | 0.00 | 0.00 | 0.00 | 0.04 | 3.90 | 5.93 | 5.04 | 5.33 | |
2012 | Su | 12.80 | 15.34 | 13.66 | 9.05 | 0.00 | 0.00 | 0.00 | 0.00 | 2.70 | 5.67 | 5.31 | 8.03 |
Au | 9.61 | 10.48 | 13.56 | 15.74 | 0.00 | 0.00 | 0.00 | 0.18 | 1.70 | 5.17 | 3.57 | 4.73 | |
2013 | Su | 22.06 | 21.26 | 20.55 | 18.08 | 0.00 | 0.18 | 0.96 | 1.39 | 2.70 | 3.30 | 3.40 | 4.53 |
Au | 10.09 | 11.74 | 15.40 | 18.46 | 0.02 | 0.10 | 0.16 | 0.17 | 12.40 | 7.80 | 7.07 | 5.58 | |
2014 | Su | 20.96 | 20.60 | 20.75 | 20.09 | 0.00 | 0.06 | 0.95 | 0.95 | 3.20 | 4.47 | 5.07 | 4.64 |
Au | 5.59 | 4.60 | 11.63 | 15.06 | 0.00 | 0.00 | 0.00 | 0.05 | 2.50 | 2.70 | 4.14 | 4.18 | |
2015 | Su | 23.93 | 26.22 | 22.02 | 18.63 | 0.00 | 0.00 | 0.00 | 0.02 | 5.10 | 6.00 | 7.19 | 7.27 |
Au | 13.83 | 12.75 | 17.85 | 19.78 | 0.00 | 0.00 | 0.08 | 0.15 | 5.60 | 8.60 | 9.94 | 8.81 | |
2016 | Su | 24.37 | 22.69 | 24.75 | 22.00 | 0.00 | 0.01 | 0.01 | 0.71 | 5.10 | 5.50 | 8.56 | 9.03 |
Au | 15.15 | 13.65 | 16.04 | 19.81 | 0.00 | 0.00 | 0.08 | 0.23 | 4.90 | 7.73 | 7.71 | 7.78 | |
2017 | Su | 14.70 | 17.42 | 14.63 | 10.63 | 0.00 | 0.00 | 0.00 | 0.00 | 17.00 | 17.97 | 13.59 | 13.28 |
Au | 15.67 | 19.60 | 21.78 | 23.34 | 0.00 | 0.02 | 0.03 | 0.69 | 23.80 | 15.13 | 11.83 | 9.69 | |
2018 | Su | 11.85 | 16.61 | 14.09 | 9.23 | 0.00 | 0.30 | 0.30 | 0.40 | 10.90 | 15.80 | 11.80 | 12.28 |
Au | 16.17 | 13.43 | 18.24 | 20.21 | 0.00 | 0.24 | 0.24 | 0.31 | 12.60 | 10.43 | 10.83 | 10.99 | |
2019 | Su | 24.69 | 22.02 | 18.70 | 14.62 | 0.12 | 0.22 | 0.22 | 0.58 | 5.80 | 7.30 | 7.49 | 8.21 |
Au | 17.15 | 16.91 | 18.51 | 20.40 | 0.06 | 0.34 | 1.11 | 2.46 | 5.80 | 7.60 | 7.59 | 9.20 | |
2020 | Su | 19.19 | 16.23 | 14.59 | 9.97 | 0.00 | 0.00 | 0.01 | 0.37 | 12.40 | 8.27 | 10.96 | 9.96 |
Au | 16.72 | 16.20 | 17.23 | 19.95 | 0.05 | 0.05 | 0.05 | 0.98 | 5.80 | 6.90 | 7.64 | 7.07 |
References
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Yang, W. Water sustainability for China and beyond. Science 2012, 337, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhao, N.; Ni, Y.; Yi, J.P.; Wilson, J.; He, L.; Du, Y.; Pei, T.; Zhou, C.; Song, C.; et al. China’s improving inland surface water quality since 2003. Sci. Adv. 2021, 6, 3798–3807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, L.; Maruya, K.A.; Snyder, S.A.; Zeng, E.Y. China’s water pollution by persistent organic pollutants. Environ. Pollut. 2012, 163, 100–108. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Qin, B.; Pan, D. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations. Int. J. Appl. Earth Obs. 2018, 68, 287–297. [Google Scholar] [CrossRef]
- Liu, X.; Lee, Z.; Zhang, Y.; Lin, J.; Shi, K.; Zhou, Y.; Qin, B.; Sun, Z. Remote Sensing of Secchi Depth in Highly Turbid Lake Waters and Its Application with MERIS Data. Remote Sens. 2019, 11, 2226. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Matsushita, B.; Setiawan, F.; Vundo, A. An improved algorithm for estimating the Secchi disk depth from remote sensing data based on the new underwater visibility theory. ISPRS J. Photogramm. 2019, 152, 13–23. [Google Scholar] [CrossRef]
- Li, T.; Zhu, B.; Cao, F.; Sun, H.; He, X.; Liu, M.; Gong, F.; Bai, Y. Monitoring Changes in the Transparency of the Largest Reservoir in Eastern China in the Past Decade, 2013–2020. Remote Sens. 2021, 13, 2570. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cardenas, R.; Urrutia, R. Retrieving Water Turbidity in Araucanian Lakes (South-Central Chile) Based on Multispectral Landsat Imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, H.; Feng, L.; Ma, R.; Xue, K. Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [Google Scholar] [CrossRef]
- McCullough, I.M.; Loftin, C.S.; Sader, S.A. Combining Lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sens. Environ. 2012, 123, 109–115. [Google Scholar] [CrossRef]
- Maciel, D.A.; Barbosa, C.C.F.; Novo, E.M.L.d.M.; Flores Júnior, R.; Begliomini, F.N. Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods. ISPRS J. Photogram. 2021, 182, 134–152. [Google Scholar] [CrossRef]
- Wei, X.; Xu, W.; Bao, K.; Hou, W.; Su, J.; Li, H.; Miao, Z. A Water Body Extraction Methods Comparison Based on FengYun Satellite Data: A Case Study of Poyang Lake Region, China. Remote Sens. 2020, 12, 3875. [Google Scholar] [CrossRef]
- Shang, S.; Lee, Z.; Shi, L.; Lin, G.; Wei, G.; Li, X. Changes in water clarity of the Bohai Sea: Observations from MODIS. Remote Sens. Environ. 2016, 186, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 37–48. [Google Scholar] [CrossRef]
- Cillero Castro, C.; Domínguez Gómez, J.A.; Delgado Martín, J.; Hinojo Sánchez, B.A.; Cereijo Arango, J.L.; Cheda Tuya, F.A.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Siegel, D.A.; Behrenfeld, M.J.; Maritorena, S.; McClain, C.R.; Antoine, D.; Bailey, S.W.; Bontempi, P.S.; Boss, E.S.; Dierssen, H.M.; Doney, S.C.; et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 2013, 135, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Westergaard-Nielsen, A.; Christiansen, C.T.; Elberling, B. Growing season leaf carbon:nitrogen dynamics in Arctic tundra vegetation from ground and Sentinel-2 observations reveal reallocation timing and upscaling potential. Remote Sens. Environ. 2021, 262, 112512–112522. [Google Scholar] [CrossRef]
- Jorge, D.S.F.; Loisel, H.; Jamet, C.; Dessailly, D.; Demaria, J.; Bricaud, A.; Maritorena, S.; Zhang, X.; Antoine, D.; Kutser, T.; et al. A three-step semi analytical algorithm (3SAA) for estimating inherent optical properties over oceanic, coastal, and inland waters from remote sensing reflectance. Remote Sens. Environ. 2021, 263, 112537. [Google Scholar] [CrossRef]
- Gupana, R.S.; Odermatt, D.; Cesana, I.; Giardino, C.; Nedbal, L.; Damm, A. Remote sensing of sun-induced chlorophyll-a fluorescence in inland and coastal waters: Current state and future prospects. Remote Sens. Environ. 2021, 262, 112482–112502. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Wang, Q.; Lv, J.; Liu, X.; Chen, J.; Li, N. Common fate of sister lakes in Hulunbuir Grassland: Long-term harmful algal bloom crisis from multi-source remote sensing insights. J. Hydrol. 2021, 594, 125970–125988. [Google Scholar] [CrossRef]
- Zheng, J.; Ke, C.; Shao, Z.; Li, F. Monitoring changes in the water volume of Hulun Lake by integrating satellite altimetry data and Landsat images between 1992 and 2010. J. Appl. Remote Sens. 2016, 10, 16–29. [Google Scholar] [CrossRef]
- Zhao, B.; Du, J.; Song, K.; Jacinthe, P.-A.; Xiang, X.; Zhou, H.; Yang, Z.; Zhang, L.; Guo, P. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001–2018. Chin. Geogr. Sci. 2020, 30, 1065–1080. [Google Scholar] [CrossRef]
- Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. Appl. Earth Obs. 2014, 26, 335–349. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, N.; Luo, L.; Li, X.; Ren, C.; Song, K.; Chen, J.M. Shrinkage and fragmentation of marshes in the West Songnen Plain, China, from 1954 to 2008 and its possible causes. Int. J. Appl. Earth Obs. 2011, 13, 477–486. [Google Scholar] [CrossRef]
- Wang, Q.; Song, K.; Wen, Z.; Shang, Y.; Li, S.; Fang, C.; Du, J.; Zhao, F.; Liu, G. Long-term remote sensing of total suspended matter using Landsat series sensors in Hulun Lake, China. Int. J. Remote Sens. 2020, 42, 1379–1397. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. Estimating the fluctuation of Lake Hulun, China, during 1975-2015 from satellite altimetry data. Environ. Monit. Assess. 2017, 189, 630–645. [Google Scholar] [CrossRef]
- Liang, L.; Li, C.; Shi, X.; Zhao, S.; Tian, Y.; Zhang, L. Analysis on the eutrophication trends and affecting factors in Lake Hulun, 2006-2015. J. Lake Sci. 2016, 28, 1265–1273. (In Chinese) [Google Scholar]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hantson, S.; Huxman, T.E.; Kimball, S.; Randerson, J.T.; Goulden, M.L. Warming as a Driver of Vegetation Loss in the Sonoran Desert of California. J. Geophys. Res-Biogeo. 2021, 126, e2020JG005942. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 2007, 17, 1425–1432. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 2014, 30, 650–661. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2007, 27, 3025–3033. [Google Scholar] [CrossRef]
- Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854–6875. [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595. (In Chinese) [Google Scholar]
- Feyisa, G.; Meilby, H.; Fensholt, R.; Proud, S. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Luo, Y.; Doxaran, D.; Vanhellemont, Q. Retrieval and Validation of Water Turbidity at Metre-Scale Using Pléiades Satellite Data: A Case Study in the Gironde Estuary. Remote Sens. 2020, 12, 946. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Si, W.; Wei, L.; Li, Z.; Xia, Z.; Ye, S.; Xia, Y. Retrieval of Water Quality from UAV-Borne Hyperspectral Imagery: A Comparative Study of Machine Learning Algorithms. Remote Sens. 2021, 13, 3928. [Google Scholar] [CrossRef]
- Boruff, B.J.; Easoz, J.A.; Jones, S.D.; Landry, H.R.; Mitchem, J.D.; Cutter, S.L. Tornado hazards in the United States. Clim. Res. 2003, 24, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.W.; McGuire, M.P. Using the standard deviational ellipse to document changes to the spatial dispersion of seasonal tornado activity in the United States. NPJ Clim. Atmos. Sci. 2019, 2, 21–28. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Yang, Y. Secchi depth inversion and its temporal and spatial variation analysis—A case study of nine plateau lakes in Yunnan Province of China. Int. J. Appl. Earth Obs. 2021, 100, 102344–102353. [Google Scholar] [CrossRef]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.; Dimitriou, E. An Appraisal of the Potential of Landsat 8 in Estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators. Remote Sens. 2018, 10, 1018. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Wu, X.; Bing, Q.; Pan, Y.; Wang, Z.; Fu, Y.; Wang, D.; Liu, J. Study on Retrieval of Chlorophyll-a Concentration Based on Landsat OLI Imagery in the Haihe River, China. Sustainability 2016, 8, 758. [Google Scholar] [CrossRef] [Green Version]
- Soma, M.; Pimont, F.; Allard, D.; Fournier, R.; Dupuy, J.-L. Mitigating occlusion effects in Leaf Area Density estimates from Terrestrial LiDAR through a specific kriging method. Remote Sens. Environ. 2020, 245, 111836–111847. [Google Scholar] [CrossRef]
- Li, X.; Shen, H.; Feng, R.; Li, J.; Zhang, L. DEM generation from contours and a low-resolution DEM. ISPRS J. Photogramm. 2017, 134, 135–147. [Google Scholar] [CrossRef]
- Feng, L.; Hou, X.; Zheng, Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sens. Environ. 2019, 221, 675–686. [Google Scholar] [CrossRef]
- Yang, K.; Luo, Y.; Chen, K.; Yang, Y.; Shang, C.; Yu, Z.; Xu, J.; Zhao, Y. Spatial–temporal variations in urbanization in Kunming and their impact on urban lake water quality. Land. Degrad. Dev. 2020, 31, 1392–1407. [Google Scholar] [CrossRef]
- Zia, H.; Harris, N.R.; Merrett, G.V.; Rivers, M.; Coles, N. The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks. Comput. Electron. Agric. 2013, 96, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Caković, M.; Beloica, J.; Belanović Simić, S.; Miljković, P.; Lukić, S.; Baumgertel, A.; Schwaiger, F. Diffuse Pollution and Ecological Risk Assessment in Ludaš Lake Special Nature Reserve and Palić Nature Park (Pannonian Basin). Forests 2021, 12, 1461. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, W.; Huang, L.; Zhang, Y.; Qin, J.; Li, K.; Chen, L. Spatial and temporal variability in water transparency in Yunnan Plateau lakes, China. Aquat. Sci. 2019, 81, 36–49. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, B.; Jiang, X.; Chen, J.; Wang, S. Characteristics and Source of Dissolved Organic Matter in Lake Hulun, A Large Shallow Eutrophic Steppe Lake in Northern China. Water 2020, 12, 953. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Wei, Y.; Lv, G.; Xu, N. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations. Environ. Monit. Assess. 2019, 84, 191. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Zhou, Y.; Li, N. Remote sensing estimation of water clarity for various lakes in China. Water Res. 2021, 192, 116844. [Google Scholar] [CrossRef]
- Qing, S.; Cui, T.; Lai, Q.; Bao, Y.; Diao, R.; Yue, Y.; Hao, Y. Improving remote sensing retrieval of water clarity in complex coastal and inland waters with modified absorption estimation and optical water classification using Sentinel-2 MSI. Int. J. Appl. Earth Obs. 2021, 102, 102377–102392. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.; Luo, Y.; Yang, Y.; Zhao, L.; Zhou, X. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality—A case study of Dianchi Lake. Sci. Total Environ. 2018, 624, 859–871. [Google Scholar] [CrossRef]
- Gao, S.; Li, Z.; Chen, M.; Lin, P.; Hong, Z.; Allen, D.; Neeson, T.; Hong, Y. Spatiotemporal variability of global river extent and the natural driving factors revealed by decades of Landsat observations, GRACE gravimetry observations, and land surface model simulations. Remote Sens. Environ. 2021, 267, 112725–112739. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Free, G.; Bresciani, M.; Pinardi, M.; Giardino, C.; Alikas, K.; Kangro, K.; Room, E.-I.; Vaiciute, D.; Bucas, M.; Tiskus, E.; et al. Detecting Climate Driven Changes in Chlorophyll-a Using High Frequency Monitoring: The Impact of the 2019 European Heatwave in Three Contrasting Aquatic Systems. Sensors 2021, 21, 6242. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Zhang, Y.; Critto, A.; Wu, J.; Fan, J.; Zheng, Z.; Zhang, Y. The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China. Sustainability 2016, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Yin, D.; Li, X.; Huang, J.; Su, W.; Li, X.; Wang, H. Spatial–Temporal Evolution of Vegetation NDVI in Association with Climatic, Environmental and Anthropogenic Factors in the Loess Plateau, China during 2000–2015: Quantitative Analysis Based on Geographical Detector Model. Remote Sens. 2021, 13, 4380. [Google Scholar] [CrossRef]
Band | R | Band | R | Band | R | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | −0.526 | Ln(B1/B3) | −0.636 | B1/(B1 + B3) | −0.634 | |||||||||||
B2 | −0.717 * | Ln(B2/B3) | −0.651 | B2/(B2 + B3) | −0.657 | |||||||||||
B4 | −0.675 * | Ln(B3/B4) | 0.605 | B4/(B3 + B7) | −0.654 | |||||||||||
Ln(B2) | −0.714 * | B2/(B3 + B7) | −0.667 * | B1 * (B2 − B3)/(B2 * B3) | −0.710 * | |||||||||||
Ln(B4) | −0.664 | B3/(B1 + B2) | 0.728 * | B4 * (B2 − B3)/(B2 * B3) | −0.710 * | |||||||||||
B2/B3 | 0.667 * | B3/(B1 + B4) | 0.841 ** | B5 * (B2 − B3)/(B2 * B3) | −0.638 | |||||||||||
B2 − B3 | −0.728 * | B3/(B1 + B7) | 0.692 * | B7 * (B3 − B4)/(B3 * B4) | 0.621 | |||||||||||
B2 − B7 | −0.694 * | B3/(B2 + B4) | 0.672 * | (B1 − B3)/(B1 + B3) | −0.634 | |||||||||||
B4 − B7 | −0.698 * | B3/(B2 + B5) | 0.745 * | (B2 − B3)/(B2 + B3) | −0.654 | |||||||||||
B1 − B3 | −0.606 | B3/(B4 + B5) | 0.769 * | (B3 − B4)/(B3 + B4) | 0.612 | |||||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Zhang, Y.; Guo, W.; Fahad Baqa, M. Dynamics and Drivers of Water Clarity Derived from Landsat and In-Situ Measurement Data in Hulun Lake from 2010 to 2020. Water 2022, 14, 1189. https://doi.org/10.3390/w14081189
Zhao C, Zhang Y, Guo W, Fahad Baqa M. Dynamics and Drivers of Water Clarity Derived from Landsat and In-Situ Measurement Data in Hulun Lake from 2010 to 2020. Water. 2022; 14(8):1189. https://doi.org/10.3390/w14081189
Chicago/Turabian StyleZhao, Chuanwu, Yuhuan Zhang, Wei Guo, and Muhammad Fahad Baqa. 2022. "Dynamics and Drivers of Water Clarity Derived from Landsat and In-Situ Measurement Data in Hulun Lake from 2010 to 2020" Water 14, no. 8: 1189. https://doi.org/10.3390/w14081189