Nuclear Magnetic Resonance Treatment Induces ßNGF Release from Schwann Cells and Enhances the Neurite Growth of Dorsal Root Ganglion Neurons In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Isolation and Culture of Rat Schwann Cells
2.3. Nuclear Magnetic Resonance Treatment Regimen
2.4. Harvest of Schwann-Cell-Conditioned Medium
2.5. ßNGF ELISA and Cytokine Profiling of Conditioned Schwann Cell Media
2.6. Isolation and Culture of Dorsal Root Ganglion Neurons
2.7. Immunofluorescence Staining for Schwann Cell Phenotyping and DRG Neuron Feature Analysis
2.8. Intracellular Calcium Imaging in Dorsal Root Ganglion Neurons
2.9. Patch Clamp Experiments for Current Measurement in Dorsal Root Ganglion Neurons
2.10. Reverse Transcription Polymerase Chain Reaction
2.11. Western Blot
2.12. Statistical Analysis
3. Results
3.1. Characterization of Schwann Cells Used for the NMRT Treatment and Conditioned Media Harvest
3.2. Nuclear Magnetic Resonance Treatment Enhances the Secretion of ßNGF in Schwann Cells
3.3. The Concentration of ßNGF Determined in CM NMRT Was Sufficient to Increase the Neurite Outgrowth of Dorsal Root Ganglion Neurons
3.4. Nuclear Magnetic Resonance Treatment Enhances the Release of Cytokines Involved in Nerve Regeneration
3.5. CM NMRT Did Not Affect the Expression or Activation of TRPV1 in Dorsal Root Ganglion Neurons
3.6. CM NMRT Did Not Influence the Intracellular Ca2+ Response to Capsaicin and ATP in Dorsal Root Ganglion Neurons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, T. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers. Hand Clin 2016, 32, 103–117. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Cheng, C.; Chen, Y.; Zochodne, D. Early events of peripheral nerve regeneration. Neuron Glia Biol. 2006, 2, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.L.; Yu, W.M.; Strickland, S. Peripheral regeneration. Annu. Rev. Neurosci. 2007, 30, 209–233. [Google Scholar] [CrossRef] [PubMed]
- Jessen, K.R.; Arthur-Farraj, P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019, 67, 421–437. [Google Scholar] [CrossRef]
- Martini, R.; Fischer, S.; Lopez-Vales, R.; David, S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008, 56, 1566–1577. [Google Scholar] [CrossRef]
- Gaudet, A.D.; Popovich, P.G.; Ramer, M.S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflamm. 2011, 8, 110. [Google Scholar] [CrossRef]
- Stratton, J.A.; Shah, P.T. Macrophage polarization in nerve injury: Do Schwann cells play a role? Neural Regen. Res. 2016, 11, 53–57. [Google Scholar] [CrossRef]
- Berner, J.; Weiss, T.; Sorger, H.; Rifatbegovic, F.; Kauer, M.; Windhager, R.; Dohnal, A.; Ambros, P.F.; Ambros, I.M.; Boztug, K.; et al. Human repair-related Schwann cells adopt functions of antigen-presenting cells in vitro. Glia 2022, 70, 2361–2377. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Wang, Y.; Xu, J.; Zhao, D.; Liu, M.; Shi, S.; Lin, Y. Modulation of the Crosstalk between Schwann Cells and Macrophages for Nerve Regeneration: A Therapeutic Strategy Based on a Multifunctional Tetrahedral Framework Nucleic Acids System. Adv. Mater. 2022, 34, e2202513. [Google Scholar] [CrossRef]
- Bolivar, S.; Navarro, X.; Udina, E. Schwann Cell Role in Selectivity of Nerve Regeneration. Cells 2020, 9, 2131. [Google Scholar] [CrossRef]
- Bosch-Queralt, M.; Fledrich, R.; Stassart, R.M. Schwann cell functions in peripheral nerve development and repair. Neurobiol. Dis. 2023, 176, 105952. [Google Scholar] [CrossRef] [PubMed]
- Levi-Montalcini, R. The nerve growth factor 35 years later. Science 1987, 237, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Aloe, L.; Calzà, L. NGF and related molecules in health and disease; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 2004; Volume xviii, 544p. [Google Scholar]
- Brushart, T.M. Nerve Repair; Oxford University Press: New York, NY, USA, 2011; Volume ix, 463p. [Google Scholar]
- Chan, J.R.; Watkins, T.A.; Cosgaya, J.M.; Zhang, C.; Chen, L.; Reichardt, L.F.; Shooter, E.M.; Barres, B.A. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 2004, 43, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, D.; Wu, C.; Ye, L.; Wu, Y.; Yuan, Y.; Yang, S.; Xie, L.; Mao, Y.; Jiang, T.; et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 2020, 10, 1649–1677. [Google Scholar] [CrossRef] [PubMed]
- Lewin, G.R.; Mendell, L.M. Nerve growth factor and nociception. Trends Neurosci. 1993, 16, 353–359. [Google Scholar] [CrossRef]
- Lewin, G.R.; Rueff, A.; Mendell, L.M. Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur. J. Neurosci. 1994, 6, 1903–1912. [Google Scholar] [CrossRef]
- Jankowski, M.P.; Koerber, H.R. Neurotrophic Factors and Nociceptor Sensitization. In Translational Pain Research: From Mouse to Man; Kruger, L., Light, A.R., Eds.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Pinho-Ribeiro, F.A.; Verri, W.A., Jr.; Chiu, I.M. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol. 2017, 38, 5–19. [Google Scholar] [CrossRef]
- Kullich, W.; Overbeck, K.; Spiegel, H.U. One-year-survey with multicenter data of more than 4,500 patients with degenerative rheumatic diseases treated with therapeutic nuclear magnetic resonance. J. Back Musculoskelet. Rehabil. 2013, 26, 93–104. [Google Scholar] [CrossRef]
- Temiz-Artmann, A.; Linder, P.; Kayser, P.; Digel, I.; Artmann, G.M.; Lucker, P. NMR in vitro effects on proliferation, apoptosis, and viability of human chondrocytes and osteoblasts. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 391–394. [Google Scholar] [CrossRef]
- Steinecker-Frohnwieser, B.; Weigl, L.; Weberhofer, G.; Kullich, W.; Kress, H.G. The Influence of Nuclear Magnetic Resonance Therapy (NMRT) and Interleukin IL1-b Stimulation Cal 78 Chondrosarcoma Cells and C28/ I2 Chondrocytes. J. Orthop. Rheumatol. 2015, 1, 17–18. [Google Scholar]
- Steinecker-Frohnwieser, B.; Lohberger, B.; Eck, N.; Mann, A.; Kratschmann, C.; Leithner, A.; Kullich, W.; Weigl, L. Nuclear Magnetic Resonance Therapy Modulates the miRNA Profile in Human Primary OA Chondrocytes and Antagonizes Inflammation in Tc28/2a Cells. Int. J. Mol. Sci. 2021, 22, 5959. [Google Scholar] [CrossRef] [PubMed]
- Digel, I.; Kurulgan, E.; Linder, P.; Kayser, P.; Porst, D.; Braem, G.J.; Zerlin, K.; Artmann, G.M.; Artmann, A.T. Decrease in extracellular collagen crosslinking after NMR magnetic field application in skin fibroblasts. Med. Biol. Eng. Comput. 2007, 45, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Oliva, R.; Jansen, B.; Benscheidt, F.; Sandbichler, A.M.; Egg, M. Nuclear magnetic resonance affects the circadian clock and hypoxia-inducible factor isoforms in zebrafish. Biol. Rhythm. Res. 2019, 50, 739–757. [Google Scholar] [CrossRef]
- Mann, A.; Steinecker-Frohnwieser, B.; Naghilou, A.; Millesi, F.; Supper, P.; Semmler, L.; Wolf, S.; Marinova, L.; Weigl, L.; Weiss, T.; et al. Nuclear Magnetic Resonance Treatment Accelerates the Regeneration of Dorsal Root Ganglion Neurons in vitro. Front. Cell. Neurosci. 2022, 16, 859545. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Wen, X.; Ding, X.; Wang, Q.; Wang, S.; Yu, W. Advances in biotechnology and clinical therapy in the field of peripheral nerve regeneration based on magnetism. Front. Neurol. 2023, 14, 1079757. [Google Scholar] [CrossRef]
- Wang, Z.; Baharani, A.; Wei, Z.; Truong, D.; Bi, X.; Wang, F.; Li, X.M.; Verge, V.M.K.; Zhang, Y. Low field magnetic stimulation promotes myelin repair and cognitive recovery in chronic cuprizone mouse model. Clin. Exp. Pharmacol. Physiol. 2021, 48, 1090–1102. [Google Scholar] [CrossRef]
- Yokozeki, Y.; Uchida, K.; Kawakubo, A.; Nakawaki, M.; Okubo, T.; Miyagi, M.; Inoue, G.; Itakura, M.; Sekiguchi, H.; Takaso, M. TGF-beta regulates nerve growth factor expression in a mouse intervertebral disc injury model. BMC Musculoskelet. Disord. 2021, 22, 634. [Google Scholar] [CrossRef]
- Haertinger, M.; Weiss, T.; Mann, A.; Tabi, A.; Brandel, V.; Radtke, C. Adipose Stem Cell-Derived Extracellular Vesicles Induce Proliferation of Schwann Cells via Internalization. Cells 2020, 9, 163. [Google Scholar] [CrossRef]
- Weiss, T.; Taschner-Mandl, S.; Ambros, P.F.; Ambros, I.M. Detailed Protocols for the Isolation, Culture, Enrichment and Immunostaining of Primary Human Schwann Cells. Methods Mol. Biol. 2018, 1739, 67–86. [Google Scholar] [CrossRef]
- Weiss, T.; Semmler, L.; Millesi, F.; Mann, A.; Haertinger, M.; Salzmann, M.; Radtke, C. Automated image analysis of stained cytospins to quantify Schwann cell purity and proliferation. PLoS ONE 2020, 15, e0233647. [Google Scholar] [CrossRef]
- Grynkiewicz, G.; Poenie, M.; Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985, 260, 3440–3450. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Delaville, F. The Use of Fluorescent Indicators for Measurements of Cytosolic Free Calcium Concentration in Cell Populations and Single Cells; McCormack, J., Cobbold, P., Eds.; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Kato, T.; Saeki, H.; Tsunemi, Y.; Shibata, S.; Tamaki, K.; Sato, S. Thymus and activation-regulated chemokine (TARC)/CC chemokine ligand (CCL) 17 accelerates wound healing by enhancing fibroblast migration. Exp. Dermatol. 2011, 20, 669–674. [Google Scholar] [CrossRef]
- Perez-Gonzalez, R.; Sahoo, S.; Gauthier, S.A.; Kim, Y.; Li, M.; Kumar, A.; Pawlik, M.; Benussi, L.; Ghidoni, R.; Levy, E. Neuroprotection mediated by cystatin C-loaded extracellular vesicles. Sci. Rep. 2019, 9, 11104. [Google Scholar] [CrossRef] [PubMed]
- Chrysostomou, E.; Zhou, L.; Darcy, Y.L.; Graves, K.A.; Doetzlhofer, A.; Cox, B.C. The Notch Ligand Jagged1 Is Required for the Formation, Maintenance, and Survival of Hensen’s Cells in the Mouse Cochlea. J. Neurosci. 2020, 40, 9401–9413. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.R.; Fan, D.P.; Giehl, K.M.; Bedard, A.M.; Wiegand, S.J.; Tetzlaff, W. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J. Neurosci. 1997, 17, 9583–9595. [Google Scholar] [CrossRef] [PubMed]
- Denhardt, D.T.; Noda, M. Osteopontin expression and function: Role in bone remodeling. J. Cell. Biochem. Suppl. 1998, 30–31, 92–102. [Google Scholar] [CrossRef]
- Kao, S.Y.; Katsumi, S.; Han, D.; Bizaki-Vallaskangas, A.J.; Vasilijic, S.; Landegger, L.D.; Kristiansen, A.G.; McKenna, M.J.; Stankovic, K.M. Postnatal expression and possible function of RANK and RANKL in the murine inner ear. Bone 2021, 145, 115837. [Google Scholar] [CrossRef]
- Abe, Y.; Akeda, K.; An, H.S.; Aoki, Y.; Pichika, R.; Muehleman, C.; Kimura, T.; Masuda, K. Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine 2007, 32, 635–642. [Google Scholar] [CrossRef]
- Banner, L.R.; Patterson, P.H. Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc. Natl. Acad. Sci. USA 1994, 91, 7109–7113. [Google Scholar] [CrossRef]
- Cheema, S.S.; Richards, L.; Murphy, M.; Bartlett, P.F. Leukemia inhibitory factor prevents the death of axotomised sensory neurons in the dorsal root ganglia of the neonatal rat. J. Neurosci. Res. 1994, 37, 213–218. [Google Scholar] [CrossRef]
- Cafferty, W.B.; Gardiner, N.J.; Gavazzi, I.; Powell, J.; McMahon, S.B.; Heath, J.K.; Munson, J.; Cohen, J.; Thompson, S.W. Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J. Neurosci. 2001, 21, 7161–7170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Liang, J.J.; Ng, T.K.; Hu, Z.; Xu, C.; Chen, S.; Chen, S.L.; Xu, Y.; Zhuang, X.; Huang, S.; et al. CXCL5/CXCR2 modulates inflammation-mediated neural repair after optic nerve injury. Exp. Neurol. 2021, 341, 113711. [Google Scholar] [CrossRef] [PubMed]
- Winkles, J.A. The TWEAK-Fn14 cytokine-receptor axis: Discovery, biology and therapeutic targeting. Nat. Rev. Drug Discov. 2008, 7, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.B.; Yamada, K.; Jourdi, H.; Kawamura, M.; Takei, N.; Han, D.K.; Nabeshima, T.; Nawa, H. Regulation of nerve growth factor release by nitric oxide through cyclic GMP pathway in cortical glial cells. Mol. Pharmacol. 1999, 56, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.M.; Gordon, T.; Zochodne, D.W.; Power, H.A. Improving peripheral nerve regeneration: From molecular mechanisms to potential therapeutic targets. Exp. Neurol. 2014, 261, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Tuffaha, S.; Lee, E.B. Growth Factors to Enhance Nerve Regeneration: Approaching Clinical Translation. Hand Clin. 2024, 40, 399–408. [Google Scholar] [CrossRef]
- Fujimoto, S.; Uratsuji, H.; Saeki, H.; Kagami, S.; Tsunemi, Y.; Komine, M.; Tamaki, K. CCR4 and CCR10 are expressed on epidermal keratinocytes and are involved in cutaneous immune reaction. Cytokine 2008, 44, 172–178. [Google Scholar] [CrossRef]
- Maysami, S.; Nguyen, D.; Zobel, F.; Heine, S.; Hopfner, M.; Stangel, M. Oligodendrocyte precursor cells express a functional chemokine receptor CCR3: Implications for myelination. J. Neuroimmunol. 2006, 178, 17–23. [Google Scholar] [CrossRef]
- Lin, E.Y.; Xi, W.; Aggarwal, N.; Shinohara, M.L. Osteopontin (OPN)/SPP1: From its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int. Immunol. 2023, 35, 171–180. [Google Scholar] [CrossRef]
- Wang, J.; Ren, K.Y.; Wang, Y.H.; Kou, Y.H.; Zhang, P.X.; Peng, J.P.; Deng, L.; Zhang, H.B.; Jiang, B.G. Effect of active Notch signaling system on the early repair of rat sciatic nerve injury. Artif. Cells Nanomed. Biotechnol. 2015, 43, 383–389. [Google Scholar] [CrossRef]
- Rothwell, N.J.; Relton, J.K. Involvement of cytokines in acute neurodegeneration in the CNS. Neurosci. Biobehav. Rev. 1993, 17, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Mehler, M.F.; Rozental, R.; Dougherty, M.; Spray, D.C.; Kessler, J.A. Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 1993, 362, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Bazan, J.F. Neuropoietic cytokines in the hematopoietic fold. Neuron 1991, 7, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Araujo, D.M.; Cotman, C.W. Trophic effects of interleukin-4, -7 and -8 on hippocampal neuronal cultures: Potential involvement of glial-derived factors. Brain Res. 1993, 600, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Golz, G.; Uhlmann, L.; Ludecke, D.; Markgraf, N.; Nitsch, R.; Hendrix, S. The cytokine/neurotrophin axis in peripheral axon outgrowth. Eur. J. Neurosci. 2006, 24, 2721–2730. [Google Scholar] [CrossRef]
- Marz, P.; Otten, U.; Rose-John, S. Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors. Eur. J. Neurosci. 1999, 11, 2995–3004. [Google Scholar] [CrossRef]
- Temporin, K.; Tanaka, H.; Kuroda, Y.; Okada, K.; Yachi, K.; Moritomo, H.; Murase, T.; Yoshikawa, H. Interleukin-1 beta promotes sensory nerve regeneration after sciatic nerve injury. Neurosci. Lett. 2008, 440, 130–133. [Google Scholar] [CrossRef]
- Tong, L.; Balazs, R.; Soiampornkul, R.; Thangnipon, W.; Cotman, C.W. Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol. Aging 2008, 29, 1380–1393. [Google Scholar] [CrossRef]
- Rich, K.M.; Yip, H.K.; Osborne, P.A.; Schmidt, R.E.; Johnson, E.M., Jr. Role of nerve growth factor in the adult dorsal root ganglia neuron and its response to injury. J. Comp. Neurol. 1984, 230, 110–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rad, A.; Weigl, L.; Steinecker-Frohnwieser, B.; Stadlmayr, S.; Millesi, F.; Haertinger, M.; Borger, A.; Supper, P.; Semmler, L.; Wolf, S.; et al. Nuclear Magnetic Resonance Treatment Induces ßNGF Release from Schwann Cells and Enhances the Neurite Growth of Dorsal Root Ganglion Neurons In Vitro. Cells 2024, 13, 1544. https://doi.org/10.3390/cells13181544
Rad A, Weigl L, Steinecker-Frohnwieser B, Stadlmayr S, Millesi F, Haertinger M, Borger A, Supper P, Semmler L, Wolf S, et al. Nuclear Magnetic Resonance Treatment Induces ßNGF Release from Schwann Cells and Enhances the Neurite Growth of Dorsal Root Ganglion Neurons In Vitro. Cells. 2024; 13(18):1544. https://doi.org/10.3390/cells13181544
Chicago/Turabian StyleRad, Anda, Lukas Weigl, Bibiane Steinecker-Frohnwieser, Sarah Stadlmayr, Flavia Millesi, Maximilian Haertinger, Anton Borger, Paul Supper, Lorenz Semmler, Sonja Wolf, and et al. 2024. "Nuclear Magnetic Resonance Treatment Induces ßNGF Release from Schwann Cells and Enhances the Neurite Growth of Dorsal Root Ganglion Neurons In Vitro" Cells 13, no. 18: 1544. https://doi.org/10.3390/cells13181544