Mammalian Inner Ear-Resident Immune Cells—A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Information Sources and Search Strategy
2.3. Study Selection Process
3. Results
3.1. Selection Process
3.2. Characteristics of the Studies
3.3. Type and Distribution of Immune Cells in Rodent Ear
Number of Specimens Analyzed | Identified Immune Cell(s) | Antibodies Used for Identification | Immune Cell Distribution | Quantification | Refs. |
---|---|---|---|---|---|
4–5 | Macrophages | IL-1b, Arg1, F4/80 | lateral wall, OC, spiral ganglion, cochlear nerve, | - | [32] |
3–7 | Macrophages | Iba1, CD11b, CD68, F4/80 | osseous spiral lamina, Rosenthal’s canal, lateral wall | - | [33] |
- | Macrophages | CD45, F4/80, Iba1, Ly6C | basilar membrane, OC, spiral ligament, spiral limbus, neural region in the osseous spiral lamina, ganglion neurons and modiolus. CD45+ cells: scala tympani side of mesothelial cells, OC, along the spiral vessels, spiral ligament, spiral limbus, neural regions of the cochlea | CD45+ cells: average number of cells per 1 mm length of the basilar membrane decreased from 35.4 ± 6.4 during the P1–4 to 26.2 ± 6.5 at P10 and to 16.8 ± 2.4 during P17–21; CD45+ cells in the apical region: 31.9 ± 11.7; CD45-positive cells in the middle region: 24.1 ± 8.2; CD45+ cells basal: 58.3 ± 2.7; spiral limbus: 51.3 ± 3.2 cells/0.1 mm2 at P4 to 23.8 ± 3.2 at P10 and to 15.6 ± 1.3 at P17; spiral ganglion region: 41.7 ± 3.2 cells per 0.1 mm2 at age P4, 35.3 ± 3.3 at age P10, 27.3 ± 1.2 at P17, | [34] |
- | Macrophages | CD45, F4/80 | across the entire length of the sensory epithelium | average number of macrophages increased from 25 ± 6 at the age of 1 month to 29 ± 3 at the age of 3–5 months and 30 ± 6 at the age of 10–12 months. basal section: average number of macrophages was reduced from 49 ± 15 for the young group to 43 ± 11 for intermediate-aged group, and further down to 22 ± 8 for the 10–12-month group | [35] |
5 | Macrophages | CD45, Iba1, Ly6C | spiral lamina, basilar membrane, scala tympani, osseous spiral lamina, among the peripheral nerve bundles of ganglion neurons | spiral lamina: 30 ± 5 basal membrane: 114 ± 11 | [36] |
- | Macrophages | - | in the lumen of the ES | - | [37] |
8 | Immune cells | MHC class II | lateral wall, OC, modiolus, spiral ganglion | - | [38] |
13 | Macrophages | BrdU, CD68, CD3, CD45 | spiral ligament, stria vascularis | 5–7 inflammatory cells per 30 μm section | [15] |
5 | Macrophages | GFP | OC | - | [39] |
4 | Macrophages | GFP | sensory epithelium of utricles | 1.4 ± 0.6 macrophages/100,000 μm2 | [40] |
- | Macrophages | Iba1, CD11b, F4/80, CD68 | IBA1-positive macrophages: spiral ganglion, spiral ligament, stria vascularis, intraluminal surface of perilymphatic space | IBA1-positive macrophages: 105 ± 50.8 at P0, 411 ± 36.6 at P3, 492 ± 49.9 at P6, and 513 ± 17.8 at P21 in the spiral ganglion (/mm2, mean ± SEM); 628 ± 61.9 at P0, 666 ± 47.3 at P3, 438 ± 58.8 at P6, and 270 ± 37.3 at P21 in the spiral ligament; and 0 ± 0 at P0, 430 ± 41.5 at P3, 583 ± 96 at P6, and 356 ± 32 in the stria vascularis | [41] |
10 | Leukocytes (Monocytes, Lymphocytes, Neutrophils) | CD45, CD54 | scala vestibuli, scala media, scala tympani, spiral ligament, stria vascularis, modiolus, and limbus | only a few labeled cells | [42] |
- | Perivascular resident macrophage-like melanocyte | F4/80 | capillaries of the stria vascularis at the apical, middle, and basal turns | 1-month-old animals: 352 ± 39/mm2 stria area 21 months: 247 ± 35/mm2 stria area | [43] |
12 | Macrophages | Iba1 | spiral ganglion, spiral ligament, stria vascularis | spiral ganglion: 3.42 ± 0.29, spiral ligament: 4.35 ± 0.36, stria vascularis: 6.83 ± 0.69 | [44] |
5 | Macrophages | CD45, Iba1, CD68, F4/80 | spiral ganglion, spiral ligament | - | [24] |
40 | Perivascular resident macrophages | F4/80, CD68, CD11b, MOMA2 | along capillaries of the blood–labyrinth barrier in the stria vascularis | - | [45] |
40 | Perivascular resident macrophages | F4/80 | between marginal and basal layers of stria vascularis | - | [46] |
5 | Mac-1-, Lyt-1-, and Lyt-2-positive cells and Immunoglobulin-positive cells | Mac-1, Lyt-1, Lyt-2, immunoglobulins classes M, G and A | cochlea: no positive cells found; ES: Lyt-1+ and IgM+ cell in perisaccular region, Mac-1 and IgG-positive cells in the ES region | - | [19] |
- | T cells, B cells (IgM-, IgG- and IgA-positive), Macrophages | Thy-1, Lyt-1, Lyt-2, immunoglobulins classes M, G and A | Thy-1’ cells: throughout the ES Lyt-l+ cells: throughout the ES Mac-1’ cells: lumen ES IgM+ cells: subepithelial region IgG’ cells: lumen and perisaccular space | - | [47] |
6 | Lymphocyte | CD4, CD8a, | ES | - | [48] |
4 | Macrophages | CD45, F4/80, MHCII and Tlr4 | lateral wall, basilar membrane, scala tympani | ~1 cell/100 µm | [49] |
3 | Macrophages | CD45, Iba1 | spiral ganglion, spiral ligament | less than one cell per 10,000 µm2 | [25] |
7 | Macrophages | CD4, CD11c, CD14, CD45, CIITA, F4/80 and MHCII | basilar membrane | 95.4 ± 16.9 | [30] |
5 | Perivascular resident macrophage-like melanocytes | F4/80, GSTα4 | semicircular canal ampullae, utricle, saccule, and semicircular canal | utricle: 225 ± 43/mm2; saccule 191 ± 25/mm2; horizontal ampullae 212 ± 36/mm2; anterior ampullae 238 ± 36/mm2; and posterior ampullae 223 ± 64/mm2 | [50] |
8 | Macrophages | - | spiral ligaments, stria vascularis, Reissner’s membrane | - | [51] |
Number of Specimens Analyzed | Identified Immune Cell(s) | Immune Cell Distribution | Quantification | Refs. |
---|---|---|---|---|
22 | Leukocytes | Around the vein. | - | [52] |
5 | Mast cells | Surrounding capillaries in the subepithelial connective tissue of the ES, but not detected in the stria vascularis. Connective tissue of the ES but not in other parts of the inner ear. | - | [53] |
- | Lymphoid cells, Macrophages, Lymphocytes, Plasma cells, Mast cells | ES. | - | [54] |
- | Macrophages, Lymphocytes, Plasma cells, Mast cells | Perisaccular blood vessels, ES. | - | [55] |
- (Guinea pigs, humans) | Mast cells | In the subepithelial connective tissue of the ES. In no other part of the inner ear. | 500–700 per sac, average of 605 | [56] |
Number of Specimens Analyzed | Identified Immune Cell(s) | Antibodies Used for Identification | Immune Cell Distribution | Quantification | Refs. |
---|---|---|---|---|---|
18 (rats) | Leukocytes, Macrophages | CD45, ED1, CD68 | spiral ganglion, OC | - | [57] |
- (rats) | Macrophages/Microglia | Iba1 | cochlear aqueduct, stria vascularis, spiral ligament, endolympathic duct | - | [58] |
- (rats, mice) | Mast cells | c-Kit/CD117, MC chymase, MC tryptase | modiolus, the spiral limbus of both species, Reissner’s, no MCs were detected in or close to the OC | Wistar rats: P1 average 17 ± 12.3, P3 average 14.7 ± 8.6, P5 average 9.8 ± 6.2, P7 average 4.7 ± 3.5, and P9 average 2.6 ± 2.1 | [59] |
6 (monkeys) | Macrophages, Plasma cells, Lymphocytes | - | the rim of the round window membrane | - | [60] |
3.4. The Type and Distribution of Immune Cells in the Human Inner Ear
3.5. Summary of Immune Cell Types and Distribution across Species
4. Discussion
4.1. Limitations
4.2. Future Directions and Conclusions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Marker | Alternative Name | Ligand | T Cell | B Cell | NK Cell | Macrophage/Monocyte | Granulocyte | Mast Cell | Function | References |
---|---|---|---|---|---|---|---|---|---|---|
CD1 | Leu6 | Lipids and glycolipids | + | + | Lipid and glycolipid antigen presentation. | [103] | ||||
CD3 | Leu4 | TCR complex | + | + | Signal transduction | [103] | ||||
CD4 | L3T4, Leu3a | MHC class II, IL-16, receptor for HIV | + | + | + | Signal transduction, receptor/coreceptor. | [103] | |||
CD5 | Lyt-1 | CD72 | + | + | Adhesion, regulation of T–B lymphocyte interaction. | [103] | ||||
CD6 | T12 | CD166 | + | Activation/costimulation, adhesion, differentiation/development. | [103] | |||||
CD8 | Leu2, Lyt-2 | MHC class I | + | Signal transduction, receptor/coreceptor for MHC class I molecules. | [103] | |||||
CD117 | c-KIT | Stem cell factor (c-kit ligand) | + | Pivotal role in the proliferation and differentiation of various cell types. Indispensable for maintaining hematopoietic stem cells in the bone marrow and mast cells’ development and function. | [103] | |||||
CD11b | Integrin αM, Ly-40 | CD54, fibronectin | + | + | + | + | + | Adhesion, chemotaxis, apoptosis. | [103] | |
CD14 | LPS Receptor | LPS | + | + | Pathogen recognition, inflammation. | [103] | ||||
CD22 | SIGLEC-2 | Sialic acid | + | B cell adhesion, immunoregulation, receptor/coreceptor, signal transduction. | [103] | |||||
CD45 | Leukocyte common antigen (LCA) | CD150, galectin-1, CD2, CD3, CD4 | + | + | + | + | + | + | T and B cell antigen receptor signaling, regulator of cell growth and differentiation. | [103] |
CD54 | ICAM-1, Ly-47 | + | + | + | + | Cell adhesion, lymphocyte activation and migration. | [103] | |||
CD68 | LAMP4 | Low-density lipoprotein, phosphatidylserine, apoptotic cells | + | Phagocytosis. | [103,104] | |||||
CD90 | Thy-1 | Not yet identified | + | + | + | Signal transduction, activation/costimulation, adhesion, differentiation/development. | [103] | |||
CD163 | SCARI1 | Hemoglobin–haptoglobin complex | + | Scavenger receptor. | [105] | |||||
CD284 | Toll-like receptor 4 (TLR4) | Lipopolysaccharide (LPS), high mobility group box 1 (HMGB1), heat shock proteins | + | + | + | + | + | + | Recognition of damage or pathogen-associated molecular patterns. | [106,107,108,109] |
CX3CR1 | Fractalkine receptor or G-protein coupled receptor 13 | Neurotactin/fractalkine | + | + | + | + | + | + | Cell adhesion, migration, survival, proliferation, neuroprotection. | [110,111] |
F4/80 | EGF-like module-containing mucin-like hormone receptor-like 1 | Not yet identified | + | + | immune response modulation and inflammation. | [112] | ||||
Iba1 | Allograft inflammatory factor 1 (AIF-1) | Fimbrin | + | Membrane ruffling and phagocytosis. | [113,114] | |||||
Mac-1 | Complement receptor 3 | ICAM1, ICAM2 | + | + | + | + | + | Phagocytosis, pattern recognition receptor. | [103] |
References
- Cope, T.E.; Baguley, D.M.; Griffiths, T.D. The functional anatomy of central auditory processing. Pract. Neurol. 2015, 15, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Fettiplace, R.; Kim, K.X. The physiology of mechanoelectrical transduction channels in hearing. Physiol. Rev. 2014, 94, 951–986. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.; Curtin, M.; Botting, N. The interplay between early social interaction, language and executive function development in deaf and hearing infants. Infant. Behav. Dev. 2021, 64, 101591. [Google Scholar] [CrossRef]
- Khan, S.; Chang, R. Anatomy of the vestibular system: A review. NeuroRehabilitation 2013, 32, 437–443. [Google Scholar] [CrossRef]
- Raphael, Y.; Altschuler, R.A. Structure and innervation of the cochlea. Brain Res. Bull. 2003, 60, 397–422. [Google Scholar] [CrossRef]
- Wan, G.; Corfas, G.; Stone, J.S. Inner ear supporting cells: Rethinking the silent majority. Semin. Cell Dev. Biol. 2013, 24, 448–459. [Google Scholar] [CrossRef]
- Barker, C.F.; Billingham, R.E. Immunologically privileged sites. Adv. Immunol. 1977, 25, 1–54. [Google Scholar]
- Habel, K.; Belcher, J.H. Immunologically privileged sites in studies of polyoma tumor antigens. Proc. Soc. Exp. Biol. Med. 1963, 113, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.P. Immunology of the inner ear: Response of the inner ear to antigen challenge. Otolaryngol. Head Neck Surg. 1983, 91, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Yimtae, K.; Song, H.; Billings, P.; Harris, J.P.; Keithley, E.M. Connection Between the Inner Ear and the Lymphatic System. Laryngoscope 2001, 111, 1631–1635. [Google Scholar] [CrossRef]
- Capra, D.; DosSantos, M.F.; Sanz, C.K.; Acosta Filha, L.G.; Nunes, P.; Heringer, M.; Ximenes-da-Silva, A.; Pessoa, L.; de Mattos Coelho-Aguiar, J.; da Fonseca, A.C.C.; et al. Pathophysiology and mechanisms of hearing impairment related to neonatal infection diseases. Front. Microbiol. 2023, 14, 1162554. [Google Scholar] [CrossRef]
- Watson, N.; Ding, B.; Zhu, X.; Frisina, R.D. Chronic inflammation—Inflammaging—In the ageing cochlea: A novel target for future presbycusis therapy. Ageing Res. Rev. 2017, 40, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, V.; Mukherjea, D.; Dhukhwa, A.; Rybak, L.P. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxidants 2021, 10, 1919. [Google Scholar] [CrossRef]
- Fredelius, L.; Rask-Andersen, H. The role of macrophages in the disposal of degeneration products within the organ of corti after acoustic overstimulation. Acta Oto-Laryngol. 1990, 109, 76–82. [Google Scholar] [CrossRef]
- Hirose, K.; Discolo, C.M.; Keasler, J.R.; Ransohoff, R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J. Comp. Neurol. 2005, 489, 180–194. [Google Scholar] [CrossRef]
- Tornabene, S.V.; Sato, K.; Pham, L.; Billings, P.; Keithley, E.M. Immune cell recruitment following acoustic trauma. Hear. Res. 2006, 222, 115–124. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Takahashi, M.; Harris, J.P. Analysis of immunocompetent cells following inner ear immunostimulation. Laryngoscope 1988, 98, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, S.; Harris, J.P. The endolymphatic sac: Its importance in inner ear immune responses. Laryngoscope 1986, 96, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Lang, H.; Ebihara, Y.; Schmiedt, R.A.; Minamiguchi, H.; Zhou, D.; Smythe, N.; Liu, L.; Ogawa, M.; Schulte, B.A. Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: Mesenchymal cells and fibrocytes. J. Comp. Neurol. 2006, 496, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Utans, U.; Arceci, R.J.; Yamashita, Y.; Russell, M.E. Cloning and characterization of allograft inflammatory factor-1: A novel macrophage factor identified in rat cardiac allografts with chronic rejection. J. Clin. Investig. 1995, 95, 2954–2962. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Ohsawa, K.; Kanazawa, H.; Kohsaka, S.; Imai, Y. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem. Biophys. Res. Commun. 2001, 286, 292–297. [Google Scholar] [CrossRef]
- Okano, T.; Nakagawa, T.; Kita, T.; Kada, S.; Yoshimoto, M.; Nakahata, T.; Ito, J. Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea. J. Neurosci. Res. 2008, 86, 1758–1767. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Fujioka, M.; Kanzaki, S.; Okano, H.J.; Shibata, S.; Yamashita, D.; Masuda, M.; Mihara, M.; Ohsugi, Y.; Ogawa, K.; et al. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci. Res. 2010, 66, 345–352. [Google Scholar] [CrossRef]
- Hirsch, S.; Austyn, J.M.; Gordon, S. Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture. J. Exp. Med. 1981, 154, 713–725. [Google Scholar] [CrossRef]
- Leenen, P.J.; de Bruijn, M.F.; Voerman, J.S.; Campbell, P.A.; van Ewijk, W. Markers of mouse macrophage development detected by monoclonal antibodies. J. Immunol. Methods 1994, 174, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Zamani, D.; Tong, L.; Rubel, E.W.; Ohlemiller, K.K.; Hirose, K.; Warchol, M.E. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion. J. Neurosci. 2015, 35, 15050–15061. [Google Scholar] [CrossRef]
- Altin, J.G.; Sloan, E.K. The role of CD45 and CD45-associated molecules in T cell activation. Immunol. Cell Biol. 1997, 75, 430–445. [Google Scholar] [CrossRef]
- Yang, W.; Vethanayagam, R.R.; Dong, Y.; Cai, Q.; Hu, B.H. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 2015, 303, 1–15. [Google Scholar] [CrossRef]
- Bergstresser, P.R.; Tigelaar, R.E.; Tharp, M.D. Conjugated avidin identifies cutaneous rodent and human mast cells. J. Investig. Dermatol. 1984, 83, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Bas, E.; Goncalves, S.; Adams, M.; Dinh, C.T.; Bas, J.M.; Van De Water, T.R.; Eshraghi, A.A. Spiral ganglion cells and macrophages initiate neuro-inflammation and scarring following cochlear implantation. Front. Cell. Neurosci. 2015, 9, 303. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.N.; Xing, Y.; Noble, K.V.; Barth, J.L.; Panganiban, C.H.; Smythe, N.M.; Bridges, M.C.; Zhu, J.; Lang, H. Macrophage-mediated glial cell elimination in the postnatal mouse cochlea. Front. Mol. Neurosci. 2017, 10, 407. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, C.; Frye, M.; Yang, W.; Ding, D.; Sharma, A.; Guo, W.; Hu, B.H. Differential fates of tissue macrophages in the cochlea during postnatal development. Hear. Res. 2018, 365, 110–126. [Google Scholar] [CrossRef]
- Frye, M.D.; Yang, W.; Zhang, C.; Xiong, B.; Hu, B.H. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hear. Res. 2017, 344, 125–134. [Google Scholar] [CrossRef]
- Frye, M.D.; Zhang, C.; Hu, B.H. Lower level noise exposure that produces only TTS modulates the immune homeostasis of cochlear macrophages. J. Neuroimmunol. 2018, 323, 152–166. [Google Scholar] [CrossRef]
- Furuta, H.; Mori, N.; Fujita, M.; Sakai, S. Ultrastructure of the endolymphatic sac in the mouse. Acta Anat. 1991, 141, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Gloddek, B.; Bodmer, D.; Brors, D.; Keithley, E.M.; Ryan, A.F. Induction of MHC class II antigens on cells of the inner ear. Audiol. Neuro-Otol. 2002, 7, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Clayman, A.C.; Nash, A.J.; Schrader, A.D.; Warchol, M.E.; Ohlemiller, K.K. Lack of fractalkine receptor on macrophages impairs spontaneous recovery of ribbon synapses after moderate noise trauma in c57bl/6 mice. Front. Neurosci. 2019, 13, 620. [Google Scholar] [CrossRef]
- Kaur, T.; Hirose, K.; Rubel, E.W.; Warchol, M.E. Macrophage recruitment and epithelial repair following hair cell injury in the mouse utricle. Front. Cell. Neurosci. 2015, 9, 150. [Google Scholar] [CrossRef]
- Kishimoto, I.; Okano, T.; Nishimura, K.; Motohashi, T.; Omori, K. Early Development of Resident Macrophages in the Mouse Cochlea Depends on Yolk Sac Hematopoiesis. Front. Neurol. 2019, 10, 1115. [Google Scholar] [CrossRef] [PubMed]
- Miyao, M.; Firestein, G.S.; Keithley, E.M.; Miyao, M.; Firestein, G.S.; Keithley, E.M. Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope 2008, 118, 1801–1808. [Google Scholar] [CrossRef]
- Neng, L.; Zhang, J.; Yang, J.; Zhang, F.; Lopez, I.A.; Dong, M.; Shi, X. Structural changes in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res. 2015, 361, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Okano, T.; Kishimoto, I. Csf1 Signaling Regulates Maintenance of Resident Macrophages and Bone Formation in the Mouse Cochlea. Front. Neurol. 2019, 10, 1244. [Google Scholar] [CrossRef] [PubMed]
- Shi, X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res. 2010, 342, 21–30. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, M.; Fridberger, A.; Hassan, A.; Degagne, J.; Neng, L.; Zhang, F.; He, W.; Ren, T.; Trune, D.; et al. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc. Natl. Acad. Sci. USA 2012, 109, 10388–10393. [Google Scholar] [CrossRef]
- Takahashi, M.; Harris, J.P. Anatomic distribution and localization of immunocompetent cells in normal mouse endolymphatic sac. Acta Oto-Laryngol. 1988, 106, 409–416. [Google Scholar] [CrossRef]
- Tomiyama, S. Th1: Mediator lymphocytes in experimental autoimmune labyrinthitis. Acta Oto-Laryngol. 2001, 121, 673–678. [Google Scholar] [CrossRef]
- Vethanayagam, R.R.; Yang, W.; Dong, Y.; Hu, B.H. Toll-like receptor 4 modulates the cochlear immune response to acoustic injury. Cell Death Dis. 2016, 7, e2245. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.; Neng, L.; Shi, X. Characterization and inflammatory response of perivascular-resident macrophage-like melanocytes in the vestibular system. JARO J. Assoc. Res. Otolaryngol. 2013, 14, 635–643. [Google Scholar] [CrossRef]
- Bae, S.H.; Kwak, S.H.; Yoo, J.E.; Kim, K.M.; Hyun, Y.M.; Choi, J.Y.; Jung, J. Three-Dimensional Distribution of Cochlear Macrophages in the Lateral Wall of Cleared Cochlea. Clin. Exp. Otorhinolaryngol. 2021, 14, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Keithley, E.M.; Wang, X.; Barkdull, G.C. Tumor necrosis factor alpha can induce recruitment of inflammatory cells to the cochlea. Otol. Neurotol. 2008, 29, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Miyamura, K.; Kanzaki, Y.; Nagata, M.; Ishikawa, T. Provocation of nystagmus and deviation by type I allergy in the inner ear of the guinea pig. Ann. Allergy 1987, 58, 36–40. [Google Scholar] [PubMed]
- Rask-Andersen, H.; Stahle, J. Lymphocyte-Macrophage Activity in the Endolymphatic Sac. ORL J. Oto-Rhino-Laryngol. Head Neck Surg. 1979, 41, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Rask-Andersen, H.; Stahle, J. Immunodefence of the inner ear? Lymphocyte-macrophage interaction in the endolymphatic sac. Acta Oto-Laryngol. 1980, 89, 283–294. [Google Scholar] [CrossRef]
- Sleeckx, J.P.; Shea, J.J.; Peremans, J.M. The mast cells of the inner ear. Acta Oto-Rhino-Laryngol. Belg. 1976, 30, 443–449. [Google Scholar]
- Ladrech, S.; Wang, J.; Simonneau, L.; Puel, J.L.; Lenoir, M. Macrophage contribution to the response of the rat organ of Corti to amikacin. J. Neurosci. Res. 2007, 85, 1970–1979. [Google Scholar] [CrossRef]
- Perin, P.; Voigt, F.F.; Bethge, P.; Helmchen, F.; Pizzala, R. iDISCO+ for the study of neuroimmune architecture of the rat auditory brainstem. Front. Neuroanat. 2019, 13, 15. [Google Scholar] [CrossRef]
- Szczepek, A.J.; Dudnik, T.; Karayay, B.; Sergeeva, V.; Olze, H.; Smorodchenko, A. Mast Cells in the Auditory Periphery of Rodents. Brain Sci. 2020, 10, 697. [Google Scholar] [CrossRef]
- Engmer, C.; Laurell, G.; Bagger-Sjoback, D.; Rask-Andersen, H. Immunodefense of the round window. Laryngoscope 2008, 118, 1057–1062. [Google Scholar] [CrossRef]
- Okayasu, T.; O’Malley, J.T.; Nadol, J.B. Density of Macrophages Immunostained with Anti-iba1 Antibody in the Vestibular Endorgans After Cochlear Implantation in the Human. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2019, 40, e774–e781. [Google Scholar] [CrossRef] [PubMed]
- Okayasu, T.; Quesnel, A.M.; O’Malley, J.T.; Kamakura, T.; Nadol, J.B. The Distribution and Prevalence of Macrophages in the Cochlea Following Cochlear Implantation in the Human: An Immunohistochemical Study Using Anti-Iba1 Antibody. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2020, 41, e304–e316. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, J.T.; Nadol, J.B., Jr.; McKenna, M.J.; Nadol, J.B., Jr. Anti CD163+, Iba1+, and CD68+ Cells in the Adult Human Inner Ear: Normal Distribution of an Unappreciated Class of Macrophages/Microglia and Implications for Inflammatory Otopathology in Humans. Otol. Neurotol. 2016, 37, 99–108. [Google Scholar] [CrossRef]
- Wackym, P.A.; Friberg, U.; Linthicum, F.H., Jr.; Bagger-Sjoback, D.; Bui, H.T.; Hofman, F.; Rask-Andersen, H. Human endolymphatic sac: Morphologic evidence of immunologic function. Ann. Otol. Rhinol. Laryngol. 1987, 96, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Altermatt, H.J.; Gebbers, J.O.; Muller, C.; Arnold, W.; Laissue, J.A. Human endolymphatic sac: Evidence for a role in inner ear immune defence. Orl 1990, 52, 143–148. [Google Scholar] [CrossRef]
- Arnold, W.; Altermatt, H.J.; Gebbers, J.O.; Laissue, J. Secretory immunoglobulin A in the human endolymphatic sac. An immunohistochemical study. ORL J. Otorhinolaryngol. Relat. Spec. 1984, 46, 286–288. [Google Scholar] [CrossRef]
- Borghesan, E. NATURE of a PIGMENTED SUBSTANCE in THE LABYRINTH. Acta Otolaryng 1964, 57, 288–293. [Google Scholar] [CrossRef]
- Liu, W.; Molnar, M.; Garnham, C.; Benav, H.; Rask-Andersen, H. Macrophages in the human cochlea: Saviors or predators—A study using super-resolution immunohistochemistry. Front. Immunol. 2018, 9, 223. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Nordstrom, C.K.; Danckwardt-Lilliestrom, N.; Rask-Andersen, H. Human inner ear immune activity: A super-resolution immunohistochemistry study. Front. Neurol. 2019, 10, 728. [Google Scholar] [CrossRef]
- Liu, W.; Rask-Andersen, H. Super-resolution immunohistochemistry study on CD4 and CD8 cells and the relation to macrophages in human cochlea. J. Otol. 2019, 14, 1–5. [Google Scholar] [CrossRef]
- Noble, K.V.; Liu, T.; Matthews, L.J.; Schulte, B.A.; Lang, H. Age-related changes in immune cells of the human cochlea. Front. Neurol. 2019, 10, 895. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, C.K.; Danckwardt-Lilliestrom, N.; Laurell, G.; Liu, W.; Rask-Andersen, H. The human endolymphatic sac and inner ear immmunity: Marcrophage interaction and molecular expression. Front. Immunol. 2019, 10, 3181. [Google Scholar]
- Rask-Andersen, H.; Lilliestrom-Danckwardt, N.; Feiberg, U.; House, W. Lymphocyte-macrophage activity in the human endolymphatic sac. Acta Oto-Laryngol. Suppl. 1991, 485, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Danckwardt-Lilliestrom, N.; Schrott-Fischer, A.; Glueckert, R.; Rask-Andersen, H. Distribution of Immune Cells Including Macrophages in the Human Cochlea. Front. Neurol. 2021, 12, 781702. [Google Scholar] [CrossRef]
- Jean, P.; Wong Jun Tai, F.; Singh-Estivalet, A.; Lelli, A.; Scandola, C.; Megharba, S.; Schmutz, S.; Roux, S.; Mechaussier, S.; Sudres, M.; et al. Single-cell transcriptomic profiling of the mouse cochlea: An atlas for targeted therapies. Proc. Natl. Acad. Sci. USA 2023, 120, e2221744120. [Google Scholar] [CrossRef]
- Gray, J.I.; Farber, D.L. Tissue-Resident Immune Cells in Humans. Annu. Rev. Immunol. 2022, 40, 195–220. [Google Scholar] [CrossRef]
- Davies, L.C.; Jenkins, S.J.; Allen, J.E.; Taylor, P.R. Tissue-resident macrophages. Nat. Immunol. 2013, 14, 986–995. [Google Scholar] [CrossRef]
- Masopust, D.; Soerens, A.G. Tissue-Resident T Cells and Other Resident Leukocytes. Annu. Rev. Immunol. 2019, 37, 521–546. [Google Scholar] [CrossRef]
- Huang, X.; Cao, M.; Xiao, Y. Alveolar macrophages in pulmonary alveolar proteinosis: Origin, function, and therapeutic strategies. Front. Immunol. 2023, 14, 1195988. [Google Scholar] [CrossRef]
- Bissonnette, E.Y.; Lauzon-Joset, J.F.; Debley, J.S.; Ziegler, S.F. Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Front. Immunol. 2020, 11, 583042. [Google Scholar] [CrossRef]
- Ma, Y.; Mouton, A.J.; Lindsey, M.L. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl. Res. 2018, 191, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Iwai, H.; Lee, S.; Baba, S.; Tomoda, K.; Inaba, M.; Ikehara, S.; Yamashita, T. Bone marrow cells as an origin of immune-mediated hearing loss. Acta Otolaryngol. 2004, 124, 8–12. [Google Scholar] [CrossRef]
- Berlucchi, M.; Soresina, A.; Redaelli De Zinis, L.O.; Valetti, L.; Valotti, R.; Lougaris, V.; Meini, A.; Salsi, D.; Nicolai, P.; Plebani, A. Sensorineural Hearing Loss in Primary Antibody Deficiency Disorders. J. Pediatr. 2008, 153, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Eşki, E.; Usta, B.E.; Asilsoy, S.; Yılmaz, İ. Sensorineural Hearing Loss in Selective Immunglobulin A Deficiency. Turk. Arch. Otorhinolaryngol. 2017, 55, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Dawood, G.; Klop, D.; Olivier, E.; Elliott, H.; Pillay, M.; Grimmer, K. Nature and extent of hearing loss in HIV-infected children: A scoping review. Int. J. Pediatr. Otorhinolaryngol. 2020, 134, 110036. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuizen, Y.; Swanepoel de, W.; Heinze, B.; Hofmeyr, L.M. Auditory and otological manifestations in adults with HIV/AIDS. Int. J. Audiol. 2013, 52, 37–43. [Google Scholar] [CrossRef]
- Iwai, H.; Inaba, M.; Van Bui, D.; Suzuki, K.; Sakagami, T.; Yun, Y.; Mitani, A.; Kobayashi, Y.; Kanda, A. Treg and IL-1 receptor type 2-expressing CD4+ T cell-deleted CD4+ T cell fraction prevents the progression of age-related hearing loss in a mouse model. J. Neuroimmunol. 2021, 357, 577628. [Google Scholar] [CrossRef]
- Sato, E.; Shick, H.E.; Ransohoff, R.M.; Hirose, K. Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. JARO J. Assoc. Res. Otolaryngol. 2010, 11, 223–234. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Guo, R.; Yu, Q.; Liu, S.; Teng, Q.; Chen, Z.R.; Xie, J.; Gong, S.; Liu, K. Cochlear resident macrophage mediates development of ribbon synapses via CX3CR1/CX3CL1 axis. Front. Mol. Neurosci. 2022, 15, 1031278. [Google Scholar] [CrossRef]
- Manickam, V.; Gawande, D.Y.; Stothert, A.R.; Clayman, A.C.; Batalkina, L.; Warchol, M.E.; Ohlemiller, K.K.; Kaur, T. Macrophages Promote Repair of Inner Hair Cell Ribbon Synapses following Noise-Induced Cochlear Synaptopathy. J. Neurosci. 2023, 43, 2075–2089. [Google Scholar] [CrossRef]
- Hough, K.; Verschuur, C.A.; Cunningham, C.; Newman, T.A. Macrophages in the cochlea; an immunological link between risk factors and progressive hearing loss. Glia 2022, 70, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Vambutas, A.; Pathak, S. AAO: Autoimmune and Autoinflammatory (Disease) in Otology: What is New in Immune-Mediated Hearing Loss. Laryngoscope Investig. Otolaryngol. 2016, 1, 110–115. [Google Scholar] [CrossRef] [PubMed]
- McCabe, B.F. Autoimmune sensorineural hearing loss. Ann. Otol. Rhinol. Laryngol. 1979, 88, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Breslin, N.K.; Varadarajan, V.V.; Sobel, E.S.; Haberman, R.S. Autoimmune inner ear disease: A systematic review of management. Laryngoscope Investig. Otolaryngol. 2020, 5, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Mata-Castro, N.; Sanz-López, L.; Varillas-Delgado, D.; García-Fernández, A. Intratympanic infliximab is a safe and effective rescue therapy for refractory immune-mediated hearing loss. Eur. Arch. Otorhinolaryngol. 2020, 277, 393–400. [Google Scholar] [CrossRef]
- Van Wijk, F.; Staecker, H.; Keithley, E.; Lefebvre, P.P. Local perfusion of the tumor necrosis factor alpha blocker infliximab to the inner ear improves autoimmune neurosensory hearing loss. Audiol. Neurootol. 2006, 11, 357–365. [Google Scholar] [CrossRef]
- Balouch, B.; Meehan, R.; Suresh, A.; Zaheer, H.A.; Jabir, A.R.; Qatanani, A.M.; Suresh, V.; Kaleem, S.Z.; McKinnon, B.J. Use of biologics for treatment of autoimmune inner ear disease. Am. J. Otolaryngol. 2022, 43, 103576. [Google Scholar] [CrossRef]
- Klinke, R.; Pape, H.; Kurtz, A.; Silbernagl, S.; Baumann, R.; Brenner, B.; Gay, R.; Rothenburger, A. Physiologie; 6. vollständig überarb. Aufl.; Thieme: Stuttgart, Germany, 2010. [Google Scholar]
- Wood, M.B.; Zuo, J. The Contribution of Immune Infiltrates to Ototoxicity and Cochlear Hair Cell Loss. Front. Cell. Neurosci. 2017, 11, 106. [Google Scholar] [CrossRef]
- Harris, J.P. Experimental autoimmune sensorineural hearing loss. Laryngoscope 1987, 97, 63–76. [Google Scholar] [CrossRef]
- Harris, J.P.; Ryan, A.F. Fundamental immune mechanisms of the brain and inner ear. Otolaryngol.—Head Neck Surg. 1995, 112, 639–653. [Google Scholar] [CrossRef]
- Tan, W.J.; Thorne, P.R.; Vlajkovic, S.M. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem. Cell. Biol. 2016, 146, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology E-Book: Cellular and Molecular Immunology, 10th ed.; Elsevier Health Sciences: Philadephia, PA, USA, 2022; p. 618. [Google Scholar]
- Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/macrosialin: Not just a histochemical marker. Lab. Investig. 2017, 97, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Schaer, D.J.; Schaer, C.A.; Buehler, P.W.; Boykins, R.A.; Schoedon, G.; Alayash, A.I.; Schaffner, A. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 2006, 107, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Sandig, H.; Bulfone-Paus, S. TLR signaling in mast cells: Common and unique features. Front. Immunol. 2012, 3, 185. [Google Scholar] [CrossRef]
- Souza-Fonseca-Guimaraes, F.; Parlato, M.; Philippart, F.; Misset, B.; Cavaillon, J.-M.; Adib-Conquy, M.; the Captain study group. Toll-like receptors expression and interferon-γ production by NK cells in human sepsis. Crit. Care 2012, 16, R206. [Google Scholar] [CrossRef]
- Buchta, C.M.; Bishop, G.A. Toll-like receptors and B cells: Functions and mechanisms. Immunol. Res. 2014, 59, 12–22. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef]
- Lee, M.; Lee, Y.; Song, J.; Lee, J.; Chang, S.Y. Tissue-specific Role of CX(3)CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw. 2018, 18, e5. [Google Scholar] [CrossRef]
- Corcione, A.; Ferretti, E.; Bertolotto, M.; Fais, F.; Raffaghello, L.; Gregorio, A.; Tenca, C.; Ottonello, L.; Gambini, C.; Furtado, G.; et al. CX3CR1 is expressed by human B lymphocytes and mediates [corrected] CX3CL1 driven chemotaxis of tonsil centrocytes. PLoS ONE 2009, 4, e8485. [Google Scholar] [CrossRef]
- Hamann, J.; Aust, G.; Araç, D.; Engel, F.B.; Formstone, C.; Fredriksson, R.; Hall, R.A.; Harty, B.L.; Kirchhoff, C.; Knapp, B.; et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol. Rev. 2015, 67, 338–367. [Google Scholar] [CrossRef]
- Ohsawa, K.; Imai, Y.; Sasaki, Y.; Kohsaka, S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J. Neurochem. 2004, 88, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, K.; Imai, Y.; Kanazawa, H.; Sasaki, Y.; Kohsaka, S. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J. Cell Sci. 2000, 113, 3073–3084. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Peer-reviewed, full-text articles reporting original data; Papers primarily or partially focused on immune cells within the inner ear; Articles that primarily consider cochlear implants, sensorineural or noise-induced hearing loss were included only if a control group was represented; Research performed on the mammalian inner ear. |
Exclusion Criteria | Conference abstracts, review papers, letters to the editor, opinion pieces, news, or case reports; Not primarily concerned with the inner ear (e.g., middle ear); Articles mainly dealing with systemic autoimmune diseases (e.g., granulomatosis with polyangiitis, spondylarthritis); Lack of at least one of the following terms in their title/abstract or the keywords in combination with immune cells: cochlea, inner ear, endolymphatic duct, endolymphatic sac, the organ of Corti (OC), vestibular organ, vestibular system; Articles were excluded when the study design used an intervention in the inner ear in the controls. |
Number of Studies (% of All Studies Included) | ||
---|---|---|
Year of publication | <1980 | 3 (6%) |
1980–1985 | 2 (4%) | |
1985–1990 | 4 (8%) | |
1990–2000 | 3 (6%) | |
2000–2005 | 3 (6%) | |
2005–2010 | 7 (14%) | |
2010–2015 | 6 (12%) | |
2015–2020 | 19 (38%) | |
2020–2022 | 2 (4%) | |
Continent | Europe | 17 (34%) |
Asia | 9 (18%) | |
North America | 23 (46%) | |
Method used | Immunohistochemistry | 16 (32%) |
Immunofluorescence | 26 (53%) | |
Electron microscopy | 7 (14%) | |
Research profile of publishing group | Otorhinolaryngology | 32 (65%) |
Pathology | 2 (4%) | |
Hearing research center | 9 (18%) | |
Multiple departments | 2 (4%) | |
Other | 4 (8%) |
Number of Specimens Analyzed | Identified Immune Cell(s) | Antibodies Used for Identification | Immune Cell Distribution | Quantification | Refs. |
---|---|---|---|---|---|
60 | T cells (CD4 and CD8), B cells, Langerhans cells, IgA- or IgG-containing lymphoid cells, Macrophages | T cells: CD45, CD8, CD4, CD6, CD5, DAKO-UCHL-1, DAKO-T1; Langerhans cells: CD1; B cells: IgA, IgG, CD22; macrophages: anti-lysozyme | T cells: epithelium, lumen, and stroma of ES; B cells: stroma and occasionally lumen of ES; Langerhans cells: occasionally epithelial layer of ES; IgA- or IgG-producing B cells: perisaccular area and lumen of ES macrophages; lumen and perisaccular stroma. | - | [65] |
- | Plasma cells with cytoplasmic IgA | IgM, IgG, IgA | Perisaccular region of ES. | - | [66] |
- | Macrophages, Lymphocytes | IBA1, CD68, CX3CL1, TLR4, CD11b, CD4, CD8a, MHCII | IBA1-positive macrophages: subepithelial tissue and epithelium of ES in the stria vascularis and spiral ganglion; spiral ligament. TLR4-positive cells: among subepithelial cells in the intermediate ES. CD4- and CD8-positive lymphocytes: in the ES. | - | [67] |
6 | Macrophages | IBA1 | Lateral wall, including the spiral ligament, scala vestibule and scala tympani, spiral limbus, spiral lamina, spiral and vestibular ganglion; in the OC. | - | [68] |
5 | Macrophages, Lymphocytes | IBA1, CD4, CD8, CD11b, CD68, MHCII, CX3CL1 | IBA1-positive macrophages: connective tissue and epithelium of the ES; stria vascularis, around the blood vessels; spiral ligament, scala vestibuli and tympani; spiral limbus, spiral lamina. In the OC, surrounding spiral ganglion. CD4- and CD8-positive lymphocytes: around modiolar blood vessels and along the border of Rosenthal’s canal; spiral ligament. | - | [69] |
5 | Macrophages, Lymphocytes | IBA1, MHCII, CX3CL1, CD11b, CD4, CD8α | CD4- and CD8-positive lymphocytes around vessels of the modiolus and along the border of the Rosenthal’s canal; scala tympani, spiral ligament. IBA1-positive macrophages: stria vascularis, among the neurons in the Rosenthal’s canal, OC. | - | [69] |
5 | Macrophages, Lymphocytes | IBA1, MHCII, CX3CL1, CD11b, CD4, CD8α | CD4- and CD8-positive lymphocytes: around vessels of the modiolus, spiral ligament. IBA1-positive macrophages: stria vascularis, among the neurons in the Rosenthal’s canal, in the modiolus. | - | [70] |
5 | Macrophages | IBA1, CD163 | IBA1-positive macrophages: stria vascularis, in the osseous spiral lamina and Rosenthal’s canal. CD163-positive macrophages: spiral ligament, osseous spiral lamina, and Rosenthal’s canal. | Apical turn: 2.7 ± 1.0; middle turn: 7.8 ± 3.5; basal turn 11.3 ± 6.5. Spiral ligament apical turn: 1.0 ± 1; middle turn: 4.0 ± 3.3; basal turn: 4.9 ± 3.0. | [71] |
5 | Macrophages, Lymphocytes | IBA1, CD11b, CD4, CD8a, TLR4, MHCII | IBA1-positive macrophages: subepithelial tissue, epithelium, perisaccular connective tissue, sac lumen; stria vascularis, spiral ganglion, spiral ligament; CD4- and CD8-positive lymphocytes: in the ES. | - | [72] |
114 | Macrophages | CD163, CD68, Iba1 | CD68-, IBA1-, and CD163-positive macrophages: spiral ligament, along the basilar membrane on the perilymphatic compartment, within the tunnel of Corti, along Reissner’s membrane, in the osseous spiral lamina, along blood vessels, among the spiral ganglion cells, in the endolymphatic duct. | - | [63] |
80 | Macrophages | IBA1 | Crista ampularis, neuroepithelium, subepithelial stroma, mid-stroma. | - | [61] |
20 | Macrophages | Iba1 | OC, under the basilar membrane, in the perilymphatic compartment, around the blood vessels; stria vascularis, osseous spiral lamina. | - | [62] |
- | Plasma cells, Monocytes, and/or Macrophages | - | Within the epithelium, around the ES. | - | [73] |
10 | Monocytes, Macrophages, Granulocytes, Leukocytes | Leu4, Leu3, Leu2, Bl, T29/33, OKMl | Macrophages: lumen of the human ES. Monocytes: limited to the ES vasculature. Leukocytes: within the subepithelial space. Lymphocytes: within the subepithelial space. | - | [64] |
- | Macrophages, Leukocytes | IBA1, CX3CL1, CX3CR1, P2Y12, MHCII, CD11b, CD117, CD19, CD8α, CD4, CD68, TLR4, TMEM119, vimentin, collagen type IV | IBA1-positive macrophages: lateral cochlear wall, spiral limbus, Reissner’s membrane, osseous spiral lamina, surrounding blood vessels, the wall of the scala vestibuli and tympani, a few occasionally in the OC, around the spiral ganglion. Macrophages: spiral ligament among types II, IV, and V fibrocytes, spiral ganglion. CD4- and CD8-positive lymphocytes: modiolus around blood vessels. | - | [74] |
2 | Macrophages | osmic acid- and iron–hematoxylin-stained | The connective tissue of the planum semilunatum in the canalicular wall, surrounding a big vessel of the stria vascularis. | - | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karayay, B.; Olze, H.; Szczepek, A.J. Mammalian Inner Ear-Resident Immune Cells—A Scoping Review. Cells 2024, 13, 1528. https://doi.org/10.3390/cells13181528
Karayay B, Olze H, Szczepek AJ. Mammalian Inner Ear-Resident Immune Cells—A Scoping Review. Cells. 2024; 13(18):1528. https://doi.org/10.3390/cells13181528
Chicago/Turabian StyleKarayay, Betül, Heidi Olze, and Agnieszka J. Szczepek. 2024. "Mammalian Inner Ear-Resident Immune Cells—A Scoping Review" Cells 13, no. 18: 1528. https://doi.org/10.3390/cells13181528