Altered Monocyte and Lymphocyte Phenotypes Associated with Pathogenesis and Clinical Efficacy of Progestogen Therapy for Peritoneal Endometriosis in Adolescents
Abstract
:1. Introduction
2. Methods
2.1. Laparoscopy
2.2. Isolation of Mononuclear Cells from Blood
2.3. Isolation of Mononuclear Cells from Peritoneal Fluid
2.4. Lymphocyte Flow Cytometry and Functional Tests
2.5. Immunosorbent Assay
3. Results
Clinical Characterization
- Blood mononuclear cell and peritoneal fluid macrophage composition at diagnosis
- 2.
- Clinical and laboratory characterization of patients with peritoneal endometriosis after 1-year progestogen therapy
- 3.
- Blood mononuclear cell composition in patients with peritoneal endometriosis after 1-year progestogen therapy
4. Discussion
5. Conclusions
- The blood counts of several subsets of mononuclear leukocytes are specifically altered in peritoneal endometriosis. The alterations, which include increased counts of monocyte subsets positive for pro-inflammatory (CD86) and anti-inflammatory markers (CD206) and lower counts of CD16+ monocytes and B1 lymphocytes (CD19+CD5+) indicate that characteristic immunological profiles are already present at initial stages of the disease in adolescent patients.
- In the blood of adolescents with endometriosis, the level of CD86+ monocytes is higher, and CD16+ is lower under the influence of the disease itself (F = 6.84, p = 0.003) under the condition of persistent dysmenorrhea (F = 15.36, p < 0.001) and chronic pelvic pain (F = 14.36, p < 0.001). In the peritoneal fluid, under the influence of the disease, the level of CD86+ is higher and the level of CD16+ macrophages is lower (F = 4.74, p = 0.033). At the same time, blood levels of CD16+ monocytes (p < 0.001, OR 35.00, percent correct 85.00%) and CD86+ monocytes (p = 0.017, OR 5.33; percent correct 70.00%) are significant independent risk factors for developing the disease in adolescence.
- In adolescents with endometriosis receiving progestogens for 1 year, a higher proportion of cytotoxic lymphocytes with the CD56dimCD16bright phenotype (p = 0.049), a higher level of CD206+ monocytes (p < 0.001) and a lower level of anti-inflammatory CD163+ monocytes (p = 0.017) was observed, which likely mediated the clinical effect of reducing the number of endometrioid heterotopias during therapy. However, the content of CD206+ and CD163+ monocytes during treatment after 12 months did not normalize and differed significantly from the content in the comparison group, which, along with the clinical picture, can serve as a justification for longer-term hormonal therapy for endometriosis in adolescents.
- A higher percentage of cytotoxic CD56dimCD16bright cells in the blood of patients with endometriosis before treatment (OR 5.25, DI 0.44; 62.12, p < 0.001) and during treatment (OR 1.92, DI 0.94; 3.93, p = 0.006), as well as the content of CD206+ monocytes during treatment (OR 0.82, DI 0.62; 1.08, p = 0.038), determined the effectiveness of relieving pain symptoms in adolescence after 1 year of treatment of endometriosis with progestogens.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DiVasta, A.D.; Vitonis, A.F.; Laufer, M.R.; Missmer, S.A. Spectrum of symptoms in women diagnosed with endometriosis during adolescence vs adulthood. Am. J. Obstet. Gynecol. 2018, 218, 324.e1–324.e11. [Google Scholar] [CrossRef]
- Hirsch, M.; Dhillon-Smith, R.; Cutner, A.S.; Yap, M.; Creighton, S.M. The Prevalence of Endometriosis in Adolescents with Pelvic Pain: A Systematic Review. J. Pediatr. Adolesc. Gynecol. 2020, 33, 623–630. [Google Scholar] [CrossRef]
- Martire, F.G.; Lazzeri, L.; Conway, F.; Siciliano, T.; Pietropolli, A.; Piccione, E.; Solima, E.; Centini, G.; Zupi, E.; Exacoustos, C. Adolescence and endometriosis: Symptoms, ultrasound signs and early diagnosis. Fertil. Steril. 2020, 114, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Yeung, P.; Gupta, S.; Gieg, S. Endometriosis in adolescents: A systematic review. J. Endometr. Pelvic Pain Disord. 2017, 9, 17–29. [Google Scholar] [CrossRef]
- Ding, D.; Wang, X.; Chen, Y.; Benagiano, G.; Liu, X.; Guo, S.-W. Evidence in support for the progressive nature of ovarian endometriomas. J. Clin. Endocrinol. Metab. 2020, 105, 2189–2202. [Google Scholar] [CrossRef] [PubMed]
- Millischer, A.-E.; Santulli, P.; Da Costa, S.; Bordonne, C.; Cazaubon, E.; Marcellin, L.; Chapron, C. Adolescent endometriosis: Prevalence increases with age on magnetic resonance imaging scan. Fertil. Steril. 2022, 119, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Koninckx, P.R.; Fernandes, R.; Ussia, A.; Schindler, L.; Wattiez, A.; Al-Suwaidi, S.; Amro, B.; Al-Maamari, B.; Hakim, Z.; Tahlak, M. Pathogenesis Based Diagnosis and Treatment of Endometriosis. Front. Endocrinol. 2021, 12, 1522. [Google Scholar] [CrossRef]
- Simpson, C.N.; Lomiguen, C.M.; Chin, J. Combating Diagnostic Delay of Endometriosis in Adolescents via Educational Awareness: A Systematic Review. Cureus 2021, 13, e15143. [Google Scholar] [CrossRef]
- Martire, F.G.; Russo, C.; Selntigia, A.; Nocita, E.; Soreca, G.; Lazzeri, L.; Zupi, E.; Exacoustos, C. Early noninvasive diagnosis of endometriosis: Dysmenorrhea and specific ultrasound findings are important indicators in young women. Fertil. Steril. 2022, 119, 455–464. [Google Scholar] [CrossRef]
- Patel, B.G.; Lenk, E.E.; Lebovic, D.I.; Shu, Y.; Yu, J.; Taylor, R.N. Pathogenesis of endometriosis: Interaction between Endocrine and inflammatory pathways. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 50, 50–60. [Google Scholar] [CrossRef]
- McKinnon, B.D.; Bertschi, D.; Bersinger, N.A.; Mueller, M.D. Inflammation and nerve fiber interaction in endometriotic pain. Trends Endocrinol. Metab. 2015, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xie, H.; Yao, S.; Liang, Y. Macrophage and nerve interaction in endometriosis. J. Neuroinflamm. 2017, 14, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sikora, J.; Smycz-Kubańska, M.; Mielczarek-Palacz, A.; Kondera-Anasz, Z. Abnormal peritoneal regulation of chemokine activation—The role of IL-8 in pathogenesis of endometriosis. Am. J. Reprod. Immunol. 2017, 77, e12622. [Google Scholar] [CrossRef]
- Laganà, A.S.; Garzon, S.; Götte, M.; Viganò, P.; Franchi, M.; Ghezzi, F.; Martin, D.C. The pathogenesis of endometriosis: Molecular and cell biology insights. Int. J. Mol. Sci. 2019, 20, 5615. [Google Scholar] [CrossRef]
- Johan, M.Z.; Ingman, W.V.; Robertson, S.A.; Hull, M.L. Macrophages infiltrating endometriosis-like lesions exhibit progressive phenotype changes in a heterologous mouse model. J. Reprod. Immunol. 2019, 132, 1–8. [Google Scholar] [CrossRef]
- Hogg, C.; Horne, A.W.; Greaves, E. Endometriosis-Associated Macrophages: Origin, Phenotype, and Function. Front. Endocrinol. 2020, 11, 7. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, Y.J.; Kim, M.J.; Lee, S.J.; Kwon, H.; Lee, J.H. Novel medicine for endometriosis and its therapeutic effect in a mouse model. Biomedicines 2020, 8, 619. [Google Scholar] [CrossRef] [PubMed]
- García-Gómez, E.; Vázquez-Martínez, E.R.; Reyes-Mayoral, C.; Cruz-Orozco, O.P.; Camacho-Arroyo, I.; Cerbón, M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front. Endocrinol. 2020, 10, 935. [Google Scholar] [CrossRef] [PubMed]
- Mehedintu, C.; Plotogea, M.; Ionescu, S.; Antonovici, M. Endometriosis still a challenge. J. Med. Life 2014, 7, 349–357. [Google Scholar]
- Takebayashi, A.; Kimura, F.; Kishi, Y.; Ishida, M.; Takahashi, A.; Yamanaka, A.; Wu, D.; Zheng, L.; Takahashi, K.; Suginami, H.; et al. Subpopulations of Macrophages within Eutopic Endometrium of Endometriosis Patients. Am. J. Reprod. Immunol. 2015, 73, 221–231. [Google Scholar] [CrossRef]
- Beste, M.T.; Pfäffle-Doyle, N.; Prentice, E.A.; Morris, S.N.; Lauffenburger, D.A.; Isaacson, K.B.; Griffith, L.G. Endometriosis: Molecular network analysis of endometriosis reveals a role for c-Jun-regulated macrophage activation. Sci. Transl. Med. 2014, 6, 222ra16. [Google Scholar] [CrossRef]
- Berbic, M.; Schulke, L.; Markham, R.; Tokushige, N.; Russell, P.; Fraser, I.S. Macrophage expression in endometrium of women with and without endometriosis. Hum. Reprod. 2009, 24, 325–332. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, H.; Wu, J.; Liu, D.; Yao, S. Villainous role of estrogen in macrophage-nerve interaction in endometriosis. Reprod. Biol. Endocrinol. 2018, 16, 122. [Google Scholar] [CrossRef]
- Keckstein, J.; Saridogan, E.; Ulrich, U.A.; Sillem, M.; Oppelt, P.; Schweppe, K.W.; Krentel, H.; Janschek, E.; Exacoustos, C.; Malzoni, M.; et al. The #Enzian classification: A comprehensive non-invasive and surgical description system for endometriosis. Acta Obstet. Gynecol. Scand. 2021, 100, 1165–1175. [Google Scholar] [CrossRef]
- Haas, D.; Shebl, O.; Shamiyeh, A.; Oppelt, P. The rASRM score and the Enzian classification for endometriosis: Their strengths and weaknesses. Acta Obstet. Gynecol. Scand. 2012, 92, 3–7. [Google Scholar] [CrossRef]
- Chen, T.; Wei, J.; Leng, T.; Gao, F.; Hou, S. The diagnostic value of the combination of hemoglobin, CA199, CA125, and HE4 in endometriosis. J. Clin. Lab. Anal. 2021, 35, e23947. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Zhang, L.-F.; Zhang, Y.-Q.; Zhou, Y.; Li, X.-Y.; Huang, X.-F. Blood tests for prediction of deep endometriosis: A case-control study. World J. Clin. Cases 2021, 9, 10805–10815. [Google Scholar] [CrossRef]
- Michel, T.; Poli, A.; Cuapio, A.; Briquemont, B.; Iserentant, G.; Ollert, M.; Zimmer, J. Human CD56bright NK Cells: An Update. J. Immunol. 2016, 196, 2923–2931. [Google Scholar] [CrossRef]
- Maas-Bauer, K.; Lohmeyer, J.K.; Hirai, T.; Ramos, T.L.; Fazal, F.M.; Litzenburger, U.M.; Yost, K.E.; Ribado, J.V.; Kambham, N.; Wenokur, A.S.; et al. Invariant natural killer T-cell subsets have diverse graft-versus-host-disease–preventing and antitumor effects. Blood 2021, 138, 858–870. [Google Scholar] [CrossRef]
- Fu, B.; Tian, Z.; Wei, H. Subsets of human natural killer cells and their regulatory effects. Immunology 2014, 141, 483–489. [Google Scholar] [CrossRef]
- Moretta, A.; Bottino, C.; Mingari, M.C.; Biassoni, R.; Moretta, L. What is a natural killer cell? Nat. Immunol. 2002, 3, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, Y.; Hu, C.; Wang, Y.; Yan, Z.; Li, Z.; Wu, R. Mitochondria and oxidative stress in ovarian endometriosis. Free Radic. Biol. Med. 2019, 136, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Kimura, M.; Maruyama, S.; Nagayasu, M.; Imanaka, S. Revisiting estrogen-dependent signaling pathways in endometriosis: Potential targets for non-hormonal therapeutics. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 258, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Shigetomi, H.; Imanaka, S. Nonhormonal therapy for endometriosis based on energy metabolism regulation. Reprod. Fertil. 2021, 2, C42–C57. [Google Scholar] [CrossRef]
- Tai, F.-W.; Chang, C.Y.-Y.; Chiang, J.-H.; Lin, W.-C.; Wan, L. Association of Pelvic Inflammatory Disease with Risk of Endometriosis: A Nationwide Cohort Study Involving 141,460 Individuals. J. Clin. Med. 2018, 7, 379. [Google Scholar] [CrossRef]
- Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage polarization: Different gene signatures in M1(Lps+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages. Front. Immunol. 2019, 10, 1084. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.B.; Archid, R.; Reymond, M.A. Reprogramming of mesothelial-mesenchymal transition in chronic peritoneal diseases by estrogen receptor modulation and tgf-β1 inhibition. Int. J. Mol. Sci. 2020, 21, 4158. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, Y.; He, Y.; Yu, W. Inflammation-mediated macrophage polarization induces TRPV1/TRPA1 heteromers in endometriosis. Am. J. Transl. Res. 2022, 14, 3066. [Google Scholar]
- Chopyak, V.V.; Koval, H.; Havrylyuk, A.; Lishchuk-Yakymovych, K.; Potomkina, H.; Kurpisz, M.K. Immunopathogenesis of endometriosis—A novel look at an old problem. Central Eur. J. Immunol. 2022, 47, 109–116. [Google Scholar] [CrossRef]
- Nielsen, M.C.; Gantzel, R.H.; Clària, J.; Trebicka, J.; Møller, H.J.; Grønbæk, H. Macrophage Activation Markers, CD163 and CD206, in Acute-on-Chronic Liver Failure. Cells 2020, 9, 1175. [Google Scholar] [CrossRef]
- Shiraishi, T.; Ikeda, M.; Watanabe, T.; Negishi, Y.; Ichikawa, G.; Kaseki, H.; Akira, S.; Morita, R.; Suzuki, S. Downregulation of pattern recognition receptors on macrophages involved in aggravation of endometriosis. Am. J. Reprod. Immunol. 2024, 91, e13812. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiu, J.; Yang, T.; Ren, C.; Yu, Z. HSF1 promotes endometriosis development and glycolysis by up-regulating PFKFB3 expression. Reprod. Biol. Endocrinol. 2021, 19, 86. [Google Scholar] [CrossRef]
- Lu, C.; Qiao, P.; Fu, R.; Wang, Y.; Lu, J.; Ling, X.; Liu, L.; Sun, Y.; Ren, C.; Yu, Z. Phosphorylation of PFKFB4 by PIM2 promotes anaerobic glycolysis and cell proliferation in endometriosis. Cell Death Dis. 2022, 13, 790. [Google Scholar] [CrossRef] [PubMed]
- Skytthe, M.K.; Graversen, J.H.; Moestrup, S.K. Targeting of cd163+ macrophages in inflammatory and malignant diseases. Int. J. Mol. Sci. 2020, 21, 5497. [Google Scholar] [CrossRef]
- Bacci, M.; Capobianco, A.; Monno, A.; Cottone, L.; Di Puppo, F.; Camisa, B.; Mariani, M.; Brignole, C.; Ponzoni, M.; Ferrari, S.; et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am. J. Pathol. 2009, 175, 547–556. [Google Scholar] [CrossRef]
- Izumi, G.; Koga, K.; Takamura, M.; Makabe, T.; Nagai, M.; Urata, Y.; Harada, M.; Hirata, T.; Hirota, Y.; Fujii, T.; et al. Mannose receptor is highly expressed by peritoneal dendritic cells in endometriosis. Fertil. Steril. 2016, 107, 167–173. [Google Scholar] [CrossRef]
- Ono, Y.; Yoshino, O.; Hiraoka, T.; Sato, E.; Furue, A.; Nawaz, A.; Hatta, H.; Fukushi, Y.; Wada, S.; Tobe, K.; et al. CD206+ macrophage is an accelerator of endometriotic-like lesion via promoting angiogenesis in the endometriosis mouse model. Sci. Rep. 2021, 11, 853. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Chen, J.H.; Zhang, J.H.; Fang, Y.; Liu, X.J.; Zhang, J.; Zhu, H.Q.; Zhan, L. Pattern-recognition receptors in endometriosis: A narrative review. Front. Immunol. 2023, 14, 1161606. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.E.; Ahn, S.H.; Monsanto, S.P.; Khalaj, K.; Koti, M.; Tayade, C. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget 2016, 8, 7138–7147. [Google Scholar] [CrossRef]
- Yang, H.-L.; Zhou, W.-J.; Chang, K.-K.; Mei, J.; Huang, L.-Q.; Wang, M.-Y.; Meng, Y.; Ha, S.-Y.; Li, D.-J.; Li, M.-Q. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction 2017, 154, 815–825. [Google Scholar] [CrossRef]
- Istrate-Ofiţeru, A.M.; Mogoantă, C.A.; Zorilă, G.L.; Roşu, G.C.; Drăguşin, R.C.; Berbecaru, E.I.A.; Zorilă, M.V.; Comănescu, C.M.; Mogoantă, S.Ș.; Vaduva, C.C.; et al. Clinical Characteristics and Local Histopathological Modulators of Endometriosis and Its Progression. Int. J. Mol. Sci. 2024, 25, 1789. [Google Scholar] [CrossRef] [PubMed]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The role of the Immune System in the Development of Endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef]
- Djuric, N.; Lafeber, G.; Li, W.; van Duinen, S.; Vleggeert-Lankamp, C. Exploring macrophage differentiation and its relation to Modic changes in human herniated disc tissue. Brain Spine 2022, 2, 101698. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, A.K.; Taneja, V.; David, C.S. HLA class II molecules influence susceptibility versus protection in inflammatory diseases by determining the cytokine profile. J. Immunol. 2013, 190, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.A.; Long, T.M.; Atkinson, R.; Clements, V.; Ostrand-Rosenberg, S. Soluble CD80 protein delays tumor growth and promotes tumor-infiltrating lymphocytes. Cancer Immunol. Res. 2017, 6, 59–68. [Google Scholar] [CrossRef]
- Olkowska-Truchanowicz, J.; Białoszewska, A.; Zwierzchowska, A.; Sztokfisz-Ignasiak, A.; Janiuk, I.; Dąbrowski, F.; Korczak-Kowalska, G.; Barcz, E.; Bocian, K.; Malejczyk, J. Peritoneal fluid from patients with ovarian endometriosis displays immunosuppressive potential and stimulates th2 response. Int. J. Mol. Sci. 2021, 22, 8134. [Google Scholar] [CrossRef] [PubMed]
- Seckin, B.; Ates, M.C.; Kirbas, A.; Yesilyurt, H. Usefulness of hematological parameters for differential diagnosis of endometriomas in younger and older women. Hum. Reprod. 2017, 32, i265. [Google Scholar]
- Păvăleanu, I.; Balan, R.A.; Grigoraş, A.; Balan, T.A.; Amălinei, C. The significance of immune microenvironment in patients with endometriosis. Rom. J. Morphol. Embryol. 2023, 64, 343–354. [Google Scholar] [CrossRef]
- Guo, X.; Ding, S.; Li, T.; Wang, J.; Yu, Q.; Zhu, L.; Xu, X.; Zou, G.; Peng, Y.; Zhang, X. Macrophage-derived netrin-1 is critical for neuroangiogenesis in endometriosis. Int. J. Biol. Macromol. 2020, 148, 226–237. [Google Scholar] [CrossRef]
- Altin, J.G.; Sloan, E.K. The role of CD45 and CD45-associated molecules in T cell activation. Immunol. Cell Biol. 1997, 75, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Zutautas, K.B.; Sisnett, D.J.; Miller, J.E.; Lingegowda, H.; Childs, T.; Bougie, O.; Lessey, B.A.; Tayade, C. The dysregulation of leukemia inhibitory factor and its implications for endometriosis pathophysiology. Front. Immunol. 2023, 14, 1089098. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.G.; Guo, J.J.; Qu, X.Y.; Tang, X.Y.; Lin, Y.Y.; Hua, K.Q.; Qiu, J.J. The extracellular vesicular pseudogene LGMNP1 induces M2-like macrophage polarization by upregulating LGMN and serves as a novel promising predictive biomarker for ovarian endometriosis recurrence. Hum. Reprod. 2021, 37, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Kisovar, A.; Becker, C.M.; Granne, I.; Southcombe, J.H. The role of CD8+ T cells in endometriosis: A systematic review. Front. Immunol. 2023, 14, 1225639. [Google Scholar] [CrossRef] [PubMed]
- Hoogstad-van Evert, J.; Paap, R.; Nap, A.; van der Molen, R. The Promises of Natural Killer Cell Therapy in Endometriosis. Int. J. Mol. Sci. 2022, 23, 5539. [Google Scholar] [CrossRef]
- Tabatabaei, F.; Tahernia, H.; Ghaedi, A.; Bazrgar, A.; Khanzadeh, S. Diagnostic significance of neutrophil to lymphocyte ratio in endometriosis: A systematic review and meta-analysis. BMC Womens Health 2023, 23, 576. [Google Scholar] [CrossRef]
Parameter | Main Group (PE), n = 50 | Comparison Group, n = 20 | p-Value |
---|---|---|---|
Monocyte subsets, blood | |||
Monocytes, abs, 109 cells/L | 0.57 (0.42–0.76) | 0.64 (0.52–0.91) | 0.178 |
Monocytes, % | 9.25 (7.80–10.70) | 9.05 (6.40–9.45) | 0.893 |
CD192+, % | 28.01 (8.92–40.88) | 14.89 (6.39–20.96) | 0.237 |
HLA-DR+, % | 50.16 (6.99–92.30) | 57.84 (47.78–97.10) | 0.470 |
CD80+, % | 3.31 (1.6–8.51) | 0.92 (0.44–4.65) | 0.260 |
CD206+, % | 0.15 (0.05–0.76) | 0.03 (0.02–0.22) | 0.032 |
CD163+, % | 80.56 (14.90–96.62) | 90.10 (53.60–98.00) | 0.266 |
CD56+, % | 0.85 (0.50–1.20) | 1.00 (0.40–1.85) | 0.789 |
CD16+, % | 2.90 (1.80–3.20) | 18.90 (2.45–35.00) | 0.024 |
CD86+, % | 39.75 (28.70–44.10) | 15.00 (11.60–25.80) | 0.010 |
Monocyte subsets, peritoneal fluid | |||
CD192+, % | 8.62 (6.25–10.66) | 12.81 (6.99–14.52) | 0.523 |
HLA-DR+, % | 90.99 (78.57–98.53) | 84.29 (69.31–97.87) | 0.898 |
CD206+, % | 0.36 (0.21–0.72) | 0.53 (0.20–0.59) | 0.766 |
CD80+, % | 0.47 (0.16–1.44) | 1.01 (0.24–2.00) | 0.594 |
CD163+, % | 95.94 (75.77–98.55) | 96.40 (80.24–98.05) | 0.879 |
CD56+, % | 0.64 (0.20–0.90) | 1.05 (0.45–1.45) | 0.522 |
CD16+, % | 0.60 (0.15–0.90) | 0.50 (0.25–1.25) | 0.831 |
CD86+, % | 0.80 (0.40–1.10) | 0.30 (0.16–0.65) | 0.201 |
Lymphocyte subsets, blood | |||
Leukocytes, abs, 109 cells/L | 5.14 (4.28–6.51) | 5.54 (4.99–6.18) | 0.329 |
Lymphocytes, % | 36.50 (29.10–43.20) | 35.60 (32.35–39.55) | 0.956 |
Lymphocytes, abs | 1.81 (1.48–2.13) | 1.88 (1.85–2.15) | 0.143 |
CD3+, % | 73.20 (70.10–78.30) | 73.30 (70.30–75.25) | 0.947 |
CD3+, abs | 1.33 (1.11–1.56) | 1.39 (1.33–1.53) | 0.226 |
CD3+CD4+ | 41.60 (37.30–46.45) | 43.95 (39.0–46.8) | 0.374 |
CD3+CD4+, abs | 0.74 (0.56–0.89) | 0.87 (0.76–0.93) | 0.055 |
CD3+CD8+, % | 26.35 (23.70–31.45) | 26.20 (23.25–28.30) | 0.579 |
CD3+CD8+, abs | 0.49 (0.39–0.64) | 0.50 (0.46–0.56) | 0.602 |
CD3+CD56+CD16+, % | 1.10 (0.70–1.60) | 1.05 (0.55–1.30) | 0.520 |
CD3+CD56+CD16+, abs | 0.02 (0.01–0.03) | 0.02 (0.01–0.03) | 0.868 |
CD3-CD56+CD16+, % | 8.10 (5.60–10.50) | 5.75 (3.7–9.8) | 0.464 |
CD3-CD56+CD16+, abs | 0.14 (0.09–0.21) | 0.12 (0.07–0.23) | 0.816 |
CD56brightCD16dim, % | 0.30 (0.20–0.55) | 0.15 (0.10–0.40) | 0.140 |
CD56brightCD16dim, abs | 0.01 (0.0–0.01) | 0.004 (0.002–0.01) | 0.179 |
CD56dimCD16bright, % | 7.55 (6.4–11.65) | 7.1 (4.50–9.15) | 0.617 |
CD56dimCD16bright, abs | 0.15 (0.1–0.22) | 0.15 (0.09–0.19) | 0.938 |
CD19+, % | 12.50 (10.80–15.10) | 12.60 (11.90–15.70) | 0.418 |
CD19+, abs | 0.23 (0.16–0.30) | 0.26 (0.21–0.32) | 0.202 |
CD19+CD5+, % | 1.10 (0.65–2.10) | 1.60 (1.35–1.70) | 0.095 |
CD19+CD5+, abs | 0.02 (0.01–0.04) | 0.03 (0.02–0.04) | 0.049 |
PAN, % | 98.80 (97.80–99.10) | 99.15 (98.45–99.35) | 0.081 |
SI | 45.00 (32.00–53.00) | 47.50 (38.00–56.50) | 0.484 |
Neutrophils, % | 53.65 (46.56–60.35) | 49.05 (47.65–56.55) | 0.594 |
Neutrophils, abs | 2.69 (2.14–3.45) | 2.74 (2.23–3.60) | 0.665 |
NLR | 1.44 (1.06–1.95) | 1.36 (1.24–1.75) | 0.851 |
Soluble factors, blood | |||
HIF-1α, pg/mL | 13.49 (0.81–61.17) | 11.63 (0.92–56.89) | 0.482 |
TGF-β1, pg/mL | 28.30 (7.02–92.77) | 8.50 (6.38–65.82) | 0.220 |
TGF-β2, pg/mL | 43.95 (4.65–98.80) | 36.46 (3.81–86.16) | 0.441 |
TGF-β3, pg/mL | 49.55 (30.84–75.03) | 48.62 (20.51–65.73) | 0.336 |
VEGF-A, pg/mL * | 23.61 ± 2.25 | 24.99 ± 3.27 | 0.028 |
sVEGFR2, pg/mL * | 322.47 ± 126.01 | 556.50 ± 547.78 | 0.001 |
Parameter | PE, Before Treatment (n = 24) | PE, 1 Year on Progestogens (n = 24) | Reference Values | p-Value |
---|---|---|---|---|
VAS, score | 8.00 (7.00–10.00) | 0.00 (0.00–3.00) | <4 | <0.001 |
Hemoglobin, g/L | 126.0 (121.0–133.0) | 134.2 (129.5–139.0) | 117–145 | <0.001 |
Erythrocytes, 1012 per L | 4.54 (4.38–4.73) | 4.68 (3.93–5.23) | 3.8–4.7 | 0.025 |
Hematocrit, L/L | 0.38 (0.37–0.39) | 0.40 (0.37–0.41) | 0.34–0.45 | 0.086 |
Platelets, 109 per L | 268.0 (227.0–307.0) | 236.0 (226.0–270.0) | 150–400 | 0.725 |
Mean platelet volume, fl | 9.95 (9.40–10.40) | 10.0 (9.7–10.5) | 9.4–12.3 | 0.763 |
Total iron (Fe2+), µmol/L | 20.50 (13.80–27.60) | 19.20 (17.32–21.43) | 8.8–27 | 0.779 |
Ferritin, µg/L | 21.30 (12.50–36.40) | 35.35 (26.20–50.80) | 20–250 | 0.007 |
Fibrinogen, g/L | 3.57 (2.37–3.10) | 2.61 (2.31–2.88) | 1.7–3.7 | 0.965 |
CRP, mg/L | 0.62 (0.32–1.44) | 0.43 (0.24–0.90) | 0–5 | 0.259 |
LH, IU/L | 5.85 (4.00–8.40) | 5.75 (3.40–7.90) | 2.4–5.4 | 0.156 |
FSH, IU/L | 5.50 (4.30–7.00) | 6.30 (5.07–7.50) | 1.9–3.7 | 0.492 |
Prolactin, mlU/L | 362.00 (250.00–549.00) | 368.00 (289.00; 492.00) | 226–502 | 0.566 |
Estradiol, pmol/L | 200.35 (132.90–407.40) | 104.03 (55.74–245.00) | 188–335 | 0.028 |
Testosterone, nmol/L | 0.92 (0.74–1.46) | 0.80 (0.64–1.03) | 1.2–1.9 | 0.374 |
FAI, % | 1.72 (1.04–2.35) | 1.83 (1.04–2.70) | <4.5 | 0.676 |
Cortisol, nmol/L | 416.50 (332.50–517.00) | 345.00 (257.00–401.00) | 212–469 | 0.008 |
17-OHP, nmol/L | 5.10 (3.00–8.10) | 3.30 (2.50–3.90) | 1.24–7.11 | 0.020 |
DHEAS, µmol/L | 4.59 (3.15–5.90) | 4.61 (3.48–5.86) | 0.9–11.7 | 0.064 |
Androstenedione, ng/mL | 10.40 (6.67–12.75) | 6.79 (3.85–7.81) | 1–12.2 | 0.026 |
AMH, ng/mL | 3.57 (2.64–4.88) | 3.23 (2.52–4.53) | 0–10.6 | 0.223 |
CA-125, U/mL | 21.21 (14.26–34.66) | 10.31 (7.17–14.90) | 0–35 | <0.001 |
CA-19.9, U/mL | 6.29 (3.96–11.94) | 6.78 (4.21–10.76) | 0–37 | 0.051 |
HE4, pmol/L | 48.33 (42.85–54.23) | 47.41 (41.34–51.96) | 0–60 | 0.115 |
Parameter | PE, before Treatment | PE, 1 Year on Progestogens | p-Value |
---|---|---|---|
Monocyte subsets (n = 24) | |||
Monocytes, 109 cells/L | 0.57 (0.42–0.76) | 0.46 (0.37–0.54) | 0.316 |
Monocytes, % | 9.25 (5.60–14.60) | 8.90 (8.50–10.25) | 0.987 |
CD206+, % | 0.76 (0.09–2.70) | 7.50 (1.55–14.20) | <0.001 |
CD163+, % | 45.02 (16.27–90.35) | 31.20 (16.30–52.80 | 0.017 |
CD16+, % | 2.90 (1.84–6.30) | 6.16 (2.24–22.90) | 0.686 |
CD86+, % | 32.65 (24.83–44.00) | 46.30 (32.10–70.80) | 0.345 |
Lymphocyte subsets (n = 11) | |||
Leukocytes, 109 cells/L | 5.99 (4.71–6.53) | 5.31 (4.87–6.09) | 0.891 |
Lymphocytes, % | 36.90 (29.40–43.10) | 35.70 (30.30–36.60) | 0.401 |
Lymphocytes, abs | 1.78 (1.46–2.84) | 1.97 (1.63–2.18) | 0.631 |
CD3+, % | 72.70 (70.40–75.60) | 73.30 (71.10–76.30) | 0.678 |
CD3+, abs | 1.40 (1.22–1.75) | 1.35 (1.24–1.60) | 0.634 |
CD3+CD4+ | 41.10 (38.80–47.20) | 43.00 (35.80–45.50) | 0.101 |
CD3+CD4+, abs | 0.84 (0.71–1.90) | 0.75 (0.68–0.87) | 0.523 |
CD3+CD8+, % | 26.40 (21.80–30.10) | 23.30 (25.30–31.80) | 0.597 |
CD3+CD8+, abs | 0.46 (0.39–0.52) | 0.45 (0.41–0.63) | 0.410 |
CD3+CD56+CD16+, % | 1.20 (0.70–1.50) | 1.40 (0.95–1.63) | 0.321 |
CD3+CD56+CD16+, abs | 0.02 (0.02–0.03) | 0.02 (0.02–0.03) | 0.386 |
CD3+CD56+CD16+, % | 8.00 (7.70–8.60) | 7.30 (6.10–9.80) | 0.112 |
CD3−CD56+CD16+, abs | 0.14 (0.12–0.21) | 0.16 (0.11–0.17) | 0.611 |
CD56brightCD16dim, % | 0.40 (0.20–0.60) | 0.30 (0.20–0.50) | 0.789 |
CD56brightCD16dim, abs | 0.01 (0.00–0.01) | 0.01 (0.0–0.10) | 0.091 |
CD56dim CD16bright, % | 6.90 (5.91–10.08) | 9.20 (6.40–14.00) | 0.049 |
CD56dim CD16bright, abs | 0.17 (0.11–0.22) | 0.19 (0.14–0.25) | 0.382 |
CD19+, % | 12.70 (12.50–13.40) | 12.40 (9.40–14.50) | 0.210 |
CD19+, abs | 0.22 (0.19–0.36) | 0.24 (0.21–0.27) | 0.312 |
CD19+CD5+, % | 1.20 (0.70–2.10) | 1.30 (0.90–1.80) | 0.785 |
CD19+CD5+, abs | 0.03 (0.02–0.05) | 0.03 (0.01–0.05) | 0.864 |
PAN, % | 98.80 (98.40–99.10) | 98.80 (97.80–99.20) | 0.201 |
SI | 53.00 (39.00–54.00) | 43.00 (33.00–54.00) | 0.832 |
Neutrophils, % | 48.50 (45.50–59.80) | 55.10 (49.80–55.90) | 0.324 |
Neutrophils, 109 cells/L | 2.93 (2.37–3.91) | 2.56 (2.39–3.32) | 0.678 |
NLR | 1.44 (1.06–1.89) | 0.08 (0.06–0.10) | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khashchenko, E.P.; Krechetova, L.V.; Vishnyakova, P.A.; Fatkhudinov, T.K.; Inviyaeva, E.V.; Vtorushina, V.V.; Gantsova, E.A.; Kiseleva, V.V.; Poltavets, A.S.; Elchaninov, A.V.; et al. Altered Monocyte and Lymphocyte Phenotypes Associated with Pathogenesis and Clinical Efficacy of Progestogen Therapy for Peritoneal Endometriosis in Adolescents. Cells 2024, 13, 1187. https://doi.org/10.3390/cells13141187
Khashchenko EP, Krechetova LV, Vishnyakova PA, Fatkhudinov TK, Inviyaeva EV, Vtorushina VV, Gantsova EA, Kiseleva VV, Poltavets AS, Elchaninov AV, et al. Altered Monocyte and Lymphocyte Phenotypes Associated with Pathogenesis and Clinical Efficacy of Progestogen Therapy for Peritoneal Endometriosis in Adolescents. Cells. 2024; 13(14):1187. https://doi.org/10.3390/cells13141187
Chicago/Turabian StyleKhashchenko, Elena P., Lyubov V. Krechetova, Polina A. Vishnyakova, Timur Kh. Fatkhudinov, Eugeniya V. Inviyaeva, Valentina V. Vtorushina, Elena A. Gantsova, Viktoriia V. Kiseleva, Anastasiya S. Poltavets, Andrey V. Elchaninov, and et al. 2024. "Altered Monocyte and Lymphocyte Phenotypes Associated with Pathogenesis and Clinical Efficacy of Progestogen Therapy for Peritoneal Endometriosis in Adolescents" Cells 13, no. 14: 1187. https://doi.org/10.3390/cells13141187