Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and TNF-α Treatment
2.2. RNA-Seq Analysis
2.2.1. RNA Extraction and Quality Control
2.2.2. Transcriptome Sequencing and Assembly
2.2.3. Transcriptome Annotation
2.3. Protein Expression by Western Blotting
2.4. Metalloproteinases and Interleukin-6 (IL-6) Release by Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. High-Content Screening (HCS) Analysis
2.6. Gene Expression by Real-Time Reverse Transcription PCR (RT-qPCR)
2.7. Statistical Analysis
2.7.1. Differential Gene Expression
2.7.2. Gene Set Enrichment Analysis
2.7.3. Validation Experiments
3. Results
3.1. Transcriptomic Results and Differential Expression
3.2. Pathway Enrichment Analysis
3.3. TNF-α Modulates Distinct Gene Networks in Myoblast Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dumont, N.A.; Bentzinger, C.F.; Sincennes, M.-C.; Rudnicki, M.A. Satellite Cells and Skeletal Muscle Regeneration. Compr. Physiol. 2015, 5, 1027–1059. [Google Scholar] [CrossRef] [PubMed]
- Snijders, T.; Nederveen, J.P.; McKay, B.R.; Joanisse, S.; Verdijk, L.B.; van Loon, L.J.C.; Parise, G. Satellite Cells in Human Skeletal Muscle Plasticity. Front. Physiol. 2015, 6, 283. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, A.; Kaczmarek, M.; Ciałowicz, M.; Clemente, F.M.; Wolański, P.; Badicu, G.; Murawska-Ciałowicz, E. The Role of Satellite Cells in Skeletal Muscle Regeneration-The Effect of Exercise and Age. Biology 2021, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, G.; Rosina, M.; Reggio, A. Signaling Pathways Regulating the Fate of Fibro/Adipogenic Progenitors (FAPs) in Skeletal Muscle Regeneration and Disease. FEBS J. 2022, 289, 6484–6517. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, O.; Ávila-Avilés, R.D.; Hernández-Hernández, J.M. Chromatin Landscape During Skeletal Muscle Differentiation. Front. Genet. 2020, 11, 578712. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Hu, P. Skeletal Muscle Regeneration Is Modulated by Inflammation. J. Orthop. Translat 2018, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Howard, E.E.; Pasiakos, S.M.; Blesso, C.N.; Fussell, M.A.; Rodriguez, N.R. Divergent Roles of Inflammation in Skeletal Muscle Recovery From Injury. Front. Physiol. 2020, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Dogra, C.; Changotra, H.; Wergedal, J.E.; Kumar, A. Regulation of Phosphatidylinositol 3-Kinase (PI3K)/Akt and Nuclear Factor-Kappa B Signaling Pathways in Dystrophin-Deficient Skeletal Muscle in Response to Mechanical Stretch. J. Cell. Physiol. 2006, 208, 575–585. [Google Scholar] [CrossRef]
- Dogra, C.; Changotra, H.; Wedhas, N.; Qin, X.; Wergedal, J.E.; Kumar, A. TNF-Related Weak Inducer of Apoptosis (TWEAK) Is a Potent Skeletal Muscle-Wasting Cytokine. FASEB J. 2007, 21, 1857–1869. [Google Scholar] [CrossRef]
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 Myokine Signaling in Skeletal Muscle: A Double-Edged Sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef]
- Shirakawa, T.; Rojasawasthien, T.; Inoue, A.; Matsubara, T.; Kawamoto, T.; Kokabu, S. Tumor Necrosis Factor Alpha Regulates Myogenesis to Inhibit Differentiation and Promote Proliferation in Satellite Cells. Biochem. Biophys. Res. Commun. 2021, 580, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.M.; DeOcesano-Pereira, C.; Teixeira, C.; Moreira, V. IL-1β and TNF-α Modulation of Proliferated and Committed Myoblasts: IL-6 and COX-2-Derived Prostaglandins as Key Actors in the Mechanisms Involved. Cells 2020, 9, 2005. [Google Scholar] [CrossRef]
- Kuru, S.; Inukai, A.; Kato, T.; Liang, Y.; Kimura, S.; Sobue, G. Expression of Tumor Necrosis Factor-Alpha in Regenerating Muscle Fibers in Inflammatory and Non-Inflammatory Myopathies. Acta Neuropathol. 2003, 105, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef]
- GeneCards—TNF Gene. Available online: https://web.archive.org/web/20240318124951/https://www.genecards.org/cgi-bin/carddisp.pl?gene=TNF&keywords=tnfa (accessed on 18 March 2024).
- Loetscher, H.; Schlaeger, E.J.; Lahm, H.W.; Pan, Y.C.; Lesslauer, W.; Brockhaus, M. Purification and Partial Amino Acid Sequence Analysis of Two Distinct Tumor Necrosis Factor Receptors from HL60 Cells. J. Biol. Chem. 1990, 265, 20131–20138. [Google Scholar] [CrossRef] [PubMed]
- Dembic, Z.; Loetscher, H.; Gubler, U.; Pan, Y.C.; Lahm, H.W.; Gentz, R.; Brockhaus, M.; Lesslauer, W. Two Human TNF Receptors Have Similar Extracellular, but Distinct Intracellular, Domain Sequences. Cytokine 1990, 2, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Medler, J.; Wajant, H. Tumor Necrosis Factor Receptor-2 (TNFR2): An Overview of an Emerging Drug Target. Expert. Opin. Ther. Targets 2019, 23, 295–307. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF Family Cytokines. Semin. Immunol. 2014, 26, 253–266. [Google Scholar] [CrossRef]
- De Bleecker, J.L.; Meire, V.I.; Declercq, W.; Van Aken, E.H. Immunolocalization of Tumor Necrosis Factor-Alpha and Its Receptors in Inflammatory Myopathies. Neuromuscul. Disord. 1999, 9, 239–246. [Google Scholar] [CrossRef]
- Nishida, T.; Kubota, S.; Aoyama, E.; Janune, D.; Lyons, K.M.; Takigawa, M. CCN Family Protein 2 (CCN2) Promotes the Early Differentiation, but Inhibits the Terminal Differentiation of Skeletal Myoblasts. J. Biochem. 2015, 157, 91–100. [Google Scholar] [CrossRef]
- Torrente, Y.; El Fahime, E.; Caron, N.J.; Del Bo, R.; Belicchi, M.; Pisati, F.; Tremblay, J.P.; Bresolin, N. Tumor Necrosis Factor-Alpha (TNF-Alpha) Stimulates Chemotactic Response in Mouse Myogenic Cells. Cell Transplant. 2003, 12, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-P. TNF-Alpha Is a Mitogen in Skeletal Muscle. Am. J. Physiol. Cell Physiol. 2003, 285, C370–C376. [Google Scholar] [CrossRef] [PubMed]
- Langen, R.C.J.; Van Der Velden, J.L.J.; Schols, A.M.W.J.; Kelders, M.C.J.M.; Wouters, E.F.M.; Janssen-Heininger, Y.M.W. Tumor Necrosis Factor-Alpha Inhibits Myogenic Differentiation through MyoD Protein Destabilization. FASEB J. 2004, 18, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-N.; Yang, W.-C.; Li, P.-W.; Wang, H.-B.; Zhang, Y.-Y.; Zan, L.-S. Myocyte Enhancer Factor 2A Promotes Proliferation and Its Inhibition Attenuates Myogenic Differentiation via Myozenin 2 in Bovine Skeletal Muscle Myoblast. PLoS ONE 2018, 13, e0196255. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-E.; Jin, B.; Li, Y.-P. TNF-Alpha Regulates Myogenesis and Muscle Regeneration by Activating p38 MAPK. Am. J. Physiol. Cell Physiol. 2007, 292, C1660–C1671. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, Y. Role of Matrix Metalloproteinases in Skeletal Muscle: Migration, Differentiation, Regeneration and Fibrosis. Cell Adh. Migr. 2009, 3, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Panguluri, S.K.; Gupta, S.K.; Dahiya, S.; Lundy, R.F.; Kumar, A. Tumor Necrosis Factor-α Regulates Distinct Molecular Pathways and Gene Networks in Cultured Skeletal Muscle Cells. PLoS ONE 2010, 5, e13262. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Andrews, S. Others FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 1 October 2023).
- Law, M.; Shaw, D.R. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse. Methods Mol. Biol. 2018, 1757, 141–161. [Google Scholar] [CrossRef] [PubMed]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping Identifiers for the Integration of Genomic Datasets with the R/Bioconductor Package biomaRt. Nat. Protoc. 2009, 4, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor: A Powerful Link between Biological Databases and Microarray Data Analysis. Bioinformatics 2005, 21, 3439–3440. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinformatics 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 October 2023).
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; Oshlack, A. A Scaling Normalization Method for Differential Expression Analysis of RNA-Seq Data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef] [PubMed]
- Phipson, B.; Lee, S.; Majewski, I.J.; Alexander, W.S.; Smyth, G.K. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 2016, 10, 946–963. [Google Scholar] [CrossRef]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential Expression Analysis of Multifactor RNA-Seq Experiments with Respect to Biological Variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Clark, J.; Ireland, A.; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; et al. The Gene Ontology (GO) Database and Informatics Resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed]
- Yu, G. Enrichplot: Visualization of Functional Enrichment Result; Bioconductor: 2023. Available online: https://www.bioconductor.org/packages/release/bioc/html/enrichplot.html (accessed on 1 October 2023).
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Meyer, S.U.; Krebs, S.; Thirion, C.; Blum, H.; Krause, S.; Pfaffl, M.W. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells. PLoS ONE 2015, 10, e0139520. [Google Scholar] [CrossRef] [PubMed]
- Yahiaoui, L.; Gvozdic, D.; Danialou, G.; Mack, M.; Petrof, B.J. CC Family Chemokines Directly Regulate Myoblast Responses to Skeletal Muscle Injury. J. Physiol. 2008, 586, 3991–4004. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.Q.; Neustrom, S.; Willis, G.M.; Spurlock, M.E. Proinflammatory Cytokines Regulate Myogenic Cell Proliferation and Fusion but Have No Impact on Myotube Protein Metabolism or Stress Protein Expression. J. Interferon Cytokine Res. 1998, 18, 879–888. [Google Scholar] [CrossRef]
- Kwak, M.K.; Ha, E.S.; Lee, J.; Choi, Y.M.; Kim, B.-J.; Hong, E.-G. C-C Motif Chemokine Ligand 2 Promotes Myogenesis of Myoblasts via the AKT-mTOR Pathway. Aging 2022, 14, 9860–9876. [Google Scholar] [CrossRef]
- Al-Alwan, L.A.; Chang, Y.; Mogas, A.; Halayko, A.J.; Baglole, C.J.; Martin, J.G.; Rousseau, S.; Eidelman, D.H.; Hamid, Q. Differential Roles of CXCL2 and CXCL3 and Their Receptors in Regulating Normal and Asthmatic Airway Smooth Muscle Cell Migration. J. Immunol. 2013, 191, 2731–2741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ran, L.; Garcia, G.E.; Wang, X.H.; Han, S.; Du, J.; Mitch, W.E. Chemokine CXCL16 Regulates Neutrophil and Macrophage Infiltration into Injured Muscle, Promoting Muscle Regeneration. Am. J. Pathol. 2009, 175, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Otis, J.S.; Niccoli, S.; Hawdon, N.; Sarvas, J.L.; Frye, M.A.; Chicco, A.J.; Lees, S.J. Pro-Inflammatory Mediation of Myoblast Proliferation. PLoS ONE 2014, 9, e92363. [Google Scholar] [CrossRef] [PubMed]
- Nicola, N.A.; Babon, J.J. Leukemia Inhibitory Factor (LIF). Cytokine Growth Factor Rev. 2015, 26, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, B.; Shevach, E.M. Regulatory T Cells: Master Thieves of the Immune System. Cell. Immunol. 2020, 355, 104160. [Google Scholar] [CrossRef]
- Shams, A.S.; Arpke, R.W.; Gearhart, M.D.; Weiblen, J.; Mai, B.; Oyler, D.; Bosnakovski, D.; Mahmoud, O.M.; Hassan, G.M.; Kyba, M. The Chemokine Receptor CXCR4 Regulates Satellite Cell Activation, Early Expansion, and Self-Renewal, in Response to Skeletal Muscle Injury. Front. Cell Dev. Biol. 2022, 10, 949532. [Google Scholar] [CrossRef]
- Millar, N.L.; Gilchrist, D.S.; Akbar, M.; Reilly, J.H.; Kerr, S.C.; Campbell, A.L.; Murrell, G.A.C.; Liew, F.Y.; Kurowska-Stolarska, M.; McInnes, I.B. MicroRNA29a Regulates IL-33-Mediated Tissue Remodelling in Tendon Disease. Nat. Commun. 2015, 6, 6774. [Google Scholar] [CrossRef]
- Collison, L.W.; Vignali, D.A.A. Interleukin-35: Odd One out or Part of the Family? Immunol. Rev. 2008, 226, 248–262. [Google Scholar] [CrossRef]
- Bunte, K.; Beikler, T. Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2019, 20, 3394. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Zammit, P.S. Function of the Myogenic Regulatory Factors Myf5, MyoD, Myogenin and MRF4 in Skeletal Muscle, Satellite Cells and Regenerative Myogenesis. Semin. Cell Dev. Biol. 2017, 72, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar] [CrossRef]
- Alameddine, H.S.; Morgan, J.E. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J. Neuromuscul. Dis. 2016, 3, 455–473. [Google Scholar] [CrossRef]
- Chargé, S.B.P.; Rudnicki, M.A. Cellular and Molecular Regulation of Muscle Regeneration. Physiol. Rev. 2004, 84, 209–238. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Kim, J.; Song, P.; Lee, T.G.; Suh, P.-G.; Ryu, S.H. Secretomics for Skeletal Muscle Cells: A Discovery of Novel Regulators? Adv. Biol. Regul. 2012, 52, 340–350. [Google Scholar] [CrossRef]
- Li, Y.P.; Schwartz, R.J. TNF-Alpha Regulates Early Differentiation of C2C12 Myoblasts in an Autocrine Fashion. FASEB J. 2001, 15, 1413–1415. [Google Scholar] [CrossRef]
- Song, Y. Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. Adv. Exp. Med. Biol. 2016, 900, 61–95. [Google Scholar] [CrossRef]
- Veldhoen, M. Interleukin 17 Is a Chief Orchestrator of Immunity. Nat. Immunol. 2017, 18, 612–621. [Google Scholar] [CrossRef]
- Platnich, J.M.; Muruve, D.A. NOD-like Receptors and Inflammasomes: A Review of Their Canonical and Non-Canonical Signaling Pathways. Arch. Biochem. Biophys. 2019, 670, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.C.; Alvarez, A.M.; DeOcesano-Pereira, C.; Fortes-Dias, C.L.; Moreira, V. Catalytically Active Phospholipase A Myotoxin from Crotalus Durissus Terrificus Induces Proliferation and Differentiation of Myoblasts Dependent on Prostaglandins Produced by Both COX-1 and COX-2 Pathways. Int. J. Biol. Macromol. 2021, 187, 603–613. [Google Scholar] [CrossRef]
- Thoma, A.; Lightfoot, A.P. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv. Exp. Med. Biol. 2018, 1088, 267–279. [Google Scholar] [CrossRef]
- Cheng, J.W.; Sadeghi, Z.; Levine, A.D.; Penn, M.S.; von Recum, H.A.; Caplan, A.I.; Hijaz, A. The Role of CXCL12 and CCL7 Chemokines in Immune Regulation, Embryonic Development, and Tissue Regeneration. Cytokine 2014, 69, 277–283. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.; Kim, Y.H.; Lee, N.H.; Song, K.-M. Irisin Promotes C2C12 Myoblast Proliferation via ERK-Dependent CCL7 Upregulation. PLoS ONE 2019, 14, e0222559. [Google Scholar] [CrossRef] [PubMed]
- Momenzadeh, S.; Jami, M.-S.; Jalalvand, A.; Esfarjani, F.; Shahabi, S.; Zamani, S. Irisin, A Mediator of Muscle Crosstalk with Other Organs: From Metabolism Regulation to Protective and Regenerative Effects. Curr. Protein Pept. Sci. 2022, 23, 89–104. [Google Scholar] [CrossRef] [PubMed]
- De Rossi, M.; Bernasconi, P.; Baggi, F.; de Waal Malefyt, R.; Mantegazza, R. Cytokines and Chemokines Are Both Expressed by Human Myoblasts: Possible Relevance for the Immune Pathogenesis of Muscle Inflammation. Int. Immunol. 2000, 12, 1329–1335. [Google Scholar] [CrossRef]
- Loiben, A.M.; Soueid-Baumgarten, S.; Kopyto, R.F.; Bhattacharya, D.; Kim, J.C.; Cosgrove, B.D. Data-Modeling Identifies Conflicting Signaling Axes Governing Myoblast Proliferation and Differentiation Responses to Diverse Ligand Stimuli. Cell. Mol. Bioeng. 2017, 10, 433–450. [Google Scholar] [CrossRef]
- Remels, A.H.V.; Gosker, H.R.; Verhees, K.J.P.; Langen, R.C.J.; Schols, A.M.W.J. TNF-α-Induced NF-κB Activation Stimulates Skeletal Muscle Glycolytic Metabolism through Activation of HIF-1α. Endocrinology 2015, 156, 1770–1781. [Google Scholar] [CrossRef]
- Hinz, M.; Krappmann, D.; Eichten, A.; Heder, A.; Scheidereit, C.; Strauss, M. NF-kappaB Function in Growth Control: Regulation of Cyclin D1 Expression and G0/G1-to-S-Phase Transition. Mol. Cell. Biol. 1999, 19, 2690–2698. [Google Scholar] [CrossRef]
- Perkins, N.D. Integrating Cell-Signalling Pathways with NF-kappaB and IKK Function. Nat. Rev. Mol. Cell Biol. 2007, 8, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, J.; Pedersen, B.K.; Kratchmarova, I. Quantitative Analysis of the Secretion of the MCP Family of Chemokines by Muscle Cells. Mol. Biosyst. 2011, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Oeckinghaus, A.; Ghosh, S. The NF-kappaB Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef]
- Alter, J.; Rozentzweig, D.; Bengal, E. Inhibition of Myoblast Differentiation by Tumor Necrosis Factor Alpha Is Mediated by c-Jun N-Terminal Kinase 1 and Leukemia Inhibitory Factor. J. Biol. Chem. 2008, 283, 23224–23234. [Google Scholar] [CrossRef]
- Taupin, J.L.; Pitard, V.; Dechanet, J.; Miossec, V.; Gualde, N.; Moreau, J.F. Leukemia Inhibitory Factor: Part of a Large Ingathering Family. Int. Rev. Immunol. 1998, 16, 397–426. [Google Scholar] [CrossRef]
- Broholm, C.; Laye, M.J.; Brandt, C.; Vadalasetty, R.; Pilegaard, H.; Pedersen, B.K.; Scheele, C. LIF Is a Contraction-Induced Myokine Stimulating Human Myocyte Proliferation. J. Appl. Physiol. 2011, 111, 251–259. [Google Scholar] [CrossRef]
- Joulia-Ekaza, D.; Cabello, G. The Myostatin Gene: Physiology and Pharmacological Relevance. Curr. Opin. Pharmacol. 2007, 7, 310–315. [Google Scholar] [CrossRef]
- Glass, D.J. PI3 Kinase Regulation of Skeletal Muscle Hypertrophy and Atrophy. Curr. Top. Microbiol. Immunol. 2010, 346, 267–278. [Google Scholar] [CrossRef]
- Parise, G.; O’Reilly, C.E.; Rudnicki, M.A. Molecular Regulation of Myogenic Progenitor Populations. Appl. Physiol. Nutr. Metab. 2006, 31, 773–781. [Google Scholar] [CrossRef]
- Milewska, M.; Grabiec, K.; Grzelkowska-Kowalczyk, K. Interactions of proliferation and differentiation signaling pathways in myogenesis. Postepy Hig. Med. Dosw. 2014, 68, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.-H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 1057. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.A.; Buckley, K.H.; Mankowski, D.C.; Riley, B.M.; Sidwell, A.N.; Douglas, S.L.; Worth, R.G.; Pizza, F.X. Myogenic Cell Expression of Intercellular Adhesion Molecule-1 Contributes to Muscle Regeneration after Injury. Am. J. Pathol. 2020, 190, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Afonina, I.S.; Zhong, Z.; Karin, M.; Beyaert, R. Limiting Inflammation-the Negative Regulation of NF-κB and the NLRP3 Inflammasome. Nat. Immunol. 2017, 18, 861–869. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Li, T.; Yang, F.; Li, Z.; Bai, X.; Wang, Y. The Role of NLRP3 Inflammasome in Inflammation-Related Skeletal Muscle Atrophy. Front. Immunol. 2022, 13, 1035709. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Qin, X.; Wedhas, N.; Arnush, M.; Linkhart, T.A.; Chadwick, R.B.; Kumar, A. Tumor Necrosis Factor-Alpha Augments Matrix Metalloproteinase-9 Production in Skeletal Muscle Cells through the Activation of Transforming Growth Factor-Beta-Activated Kinase 1 (TAK1)-Dependent Signaling Pathway. J. Biol. Chem. 2007, 282, 35113–35124. [Google Scholar] [CrossRef]
- Lei, H.; Leong, D.; Smith, L.R.; Barton, E.R. Matrix Metalloproteinase 13 Is a New Contributor to Skeletal Muscle Regeneration and Critical for Myoblast Migration. Am. J. Physiol. Cell Physiol. 2013, 305, C529–C538. [Google Scholar] [CrossRef] [PubMed]
- Zimowska, M.; Swierczynska, M.; Ciemerych, M.A. Nuclear MMP-9 Role in the Regulation of Rat Skeletal Myoblasts Proliferation. Biol. Cell 2013, 105, 334–344. [Google Scholar] [CrossRef]
- Bobadilla, M.; Sáinz, N.; Rodriguez, J.A.; Abizanda, G.; Orbe, J.; de Martino, A.; García Verdugo, J.M.; Páramo, J.A.; Prósper, F.; Pérez-Ruiz, A. MMP-10 Is Required for Efficient Muscle Regeneration in Mouse Models of Injury and Muscular Dystrophy. Stem Cells 2014, 32, 447–461. [Google Scholar] [CrossRef]
- Allen, D.L.; Teitelbaum, D.H.; Kurachi, K. Growth Factor Stimulation of Matrix Metalloproteinase Expression and Myoblast Migration and Invasion in Vitro. Am. J. Physiol. Cell Physiol. 2003, 284, C805–C815. [Google Scholar] [CrossRef]
- Bellayr, I.H.; Mu, X.; Li, Y. Biochemical Insights into the Role of Matrix Metalloproteinases in Regeneration: Challenges and Recent Developments. Future Med. Chem. 2009, 1, 1095–1111. [Google Scholar] [CrossRef]
- Morgan, J.; Rouche, A.; Bausero, P.; Houssaïni, A.; Gross, J.; Fiszman, M.Y.; Alameddine, H.S. MMP-9 Overexpression Improves Myogenic Cell Migration and Engraftment. Muscle Nerve 2010, 42, 584–595. [Google Scholar] [CrossRef]
- Clark, I.M.; Swingler, T.E.; Sampieri, C.L.; Edwards, D.R. The Regulation of Matrix Metalloproteinases and Their Inhibitors. Int. J. Biochem. Cell Biol. 2008, 40, 1362–1378. [Google Scholar] [CrossRef]
Gen Name | Primer Sequence |
---|---|
Myostatin | F: ATGGCAAGCCCAAATGTTGC R: AGGAGTCTTGACGGGTCTGA |
Versican | F: ACCAAGGAGAAGTTCGAGCA R: CTTCCCAGGTAGCCAAATCA |
CCL7 | F: GCTGCTTTCAGCATCCAAGTG R; CCAGGGACACCGACTACTG |
GAPDH | F: AGGTCGGTGTGAACGGATTTG R: TGTAGACCATGTAGTTGAGGTCA |
Description | Set Size | Enrichment Score | NES | p-Value | FDR | Rank | Leading Edge | Core Enrichment |
---|---|---|---|---|---|---|---|---|
TNF signaling pathway | 93 | 0.8 | 2.74 | 1.00 × 10−10 | 1.43 × 10−8 | 614 | tags = 31%, list = 4%, signal = 30% | CCL5/MMP9/BIRC3/CCL2/TRAF1/CXCL3/ICAM1/CXCL10/CXCL1/LIF/IL6/NFKBIA/TNFAIP3/BCL3/FAS/VCAM1/PTGS2/CEBPB/IRF1/CX3CL1/IL15/JUNB/NOD2/TRAF3/MAP3K8/EDN1/MAPK11/MAP3K5/TRAF2 |
IL−17 signaling pathway | 61 | 0.79 | 2.55 | 1.00 × 10−10 | 1.43 × 10−8 | 614 | tags = 30%, list = 4%, signal = 28% | MMP13/MMP9/CCL2/CXCL3/CCL7/CXCL10/CXCL1/CXCL5/IL6/NFKBIA/TNFAIP3/CCL11/PTGS2/CEBPB/FOSL1/TRAF3/MAPK11/TRAF2 |
NOD-like receptor signaling pathway | 119 | 0.67 | 2.42 | 2.10 × 10−10 | 1.99 × 10−8 | 1244 | tags = 24%, list = 9%, signal = 22% | CCL5/BIRC3/CCL2/CXCL3/GBP2/GBP3/GBP2B/CXCL1/NLRP3/IL6/NFKBIA/TNFAIP3/CASP4/CAMP/NOD2/TRAF3/GSDMD/RIPK2/NFKBIB/MAPK11/TRAF2/ITPR1/AIM2/CASP1/TANK/MYD88/DHX33/NFKB1/HSP90AA1 |
Chemokine signaling pathway | 114 | 0.63 | 2.26 | 1.18 × 10−08 | 8.41 × 10−7 | 381 | tags = 14%, list = 3%, signal = 14% | CCL5/CCL2/CXCL3/CCL7/CXCL16/CXCL10/CXCL1/PIK3R5/CXCL5/CCL9/NFKBIA/CCL8/CCL11/CXCR6/CX3CL1/JAK2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, A.M.; Trufen, C.E.M.; Buri, M.V.; de Sousa, M.B.N.; Arruda-Alves, F.I.; Lichtenstein, F.; Castro de Oliveira, U.; Junqueira-de-Azevedo, I.d.L.M.; Teixeira, C.; Moreira, V. Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells. Cells 2024, 13, 1161. https://doi.org/10.3390/cells13131161
Alvarez AM, Trufen CEM, Buri MV, de Sousa MBN, Arruda-Alves FI, Lichtenstein F, Castro de Oliveira U, Junqueira-de-Azevedo IdLM, Teixeira C, Moreira V. Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells. Cells. 2024; 13(13):1161. https://doi.org/10.3390/cells13131161
Chicago/Turabian StyleAlvarez, Angela María, Carlos Eduardo Madureira Trufen, Marcus Vinicius Buri, Marcela Bego Nering de Sousa, Francisco Ivanio Arruda-Alves, Flavio Lichtenstein, Ursula Castro de Oliveira, Inácio de Loiola Meirelles Junqueira-de-Azevedo, Catarina Teixeira, and Vanessa Moreira. 2024. "Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells" Cells 13, no. 13: 1161. https://doi.org/10.3390/cells13131161
APA StyleAlvarez, A. M., Trufen, C. E. M., Buri, M. V., de Sousa, M. B. N., Arruda-Alves, F. I., Lichtenstein, F., Castro de Oliveira, U., Junqueira-de-Azevedo, I. d. L. M., Teixeira, C., & Moreira, V. (2024). Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells. Cells, 13(13), 1161. https://doi.org/10.3390/cells13131161