Polysilane Dendrimers
Abstract
:1. Introduction
2. General Remarks
3. Synthetic Strategies
3.1. Cores, Spacers and Wings
3.2. Regular Single-Core Polysilane Dendrimers of First Generation
3.3. Irregular Single-Core Polysilane Dendrimers of First Generation
3.4. Single-Core Polysilane Dendrimers of Second Generation
3.5. Double-Core Polysilane Dendrimers of First Generation
4. X-Ray Crystallography
No. | Structure | Branch | Si-Si-Si spacer-core- spacer | Si-Si-Si core-spacer- branch | Si-Si core- spacer | Si-Si spacer- branch | Ref. |
---|---|---|---|---|---|---|---|
24 | 2-fold | 108 | 115 | 237 | 236 | [28] | |
47 | 2-fold | 109 | 119 | 239 | 238 | [20] | |
55 | 2-fold 3-fold | 107 110 | 116 123 | 238 239 | 237 238 | [47] | |
40 | 2-fold 3-fold | 106 111 | 116 119 | 239 239 | 238 237 | [45] | |
53 | 2-fold | 110 | 116 | 239 | 236 | [44] | |
25 | 3-fold | 112 | 129 | 237 | 240 | [19] | |
56 | 3-fold | 111 | 129 | 237 | 239 | [47] | |
26 | 3-fold | 111 | 128 | 238 | 239 | [24] |
5. NMR-Spectroscopy
Structure | Solvent | δ(Si) | Tβ | δ(Si) | Qβ | δ(Si) | Sβ | δ(Si) | Sβ | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
CDCl3 | - | - | - | - | - | - | −48.6 | S0 | [81] | |
CDCl3 | - | - | - | - | - | - | −44.9 | S1 | [81] | |
CDCl3 | - | - | - | - | −43.6 | S1 | −40.9 | S2 | [81] | |
CDCl3 | - | - | - | - | −43.4 | S1 | −39.5 | S2 | [81] | |
C6D6 | −88.1 | T0 | - | - | - | - | - | - | [81] | |
C6D6 | - | - | −135.5 | Q0 | - | - | - | - | [81] | |
C6D6 | −82.8 | T1 | - | - | −42.9 | S1 | −37.4 | S3 | [82] | |
CDCl3 | - | - | −131.9 | Q1 | - | - | −39.8 | S3 | [81] | |
THF-D8 | −82.1 | T1 | - | - | −34.8 | S3 | - | - | [77] | |
CDCl3 | −81.2 | T1 | −128.6 | Q1 | −33.2 | S3 | −31.8 | S4 | [81] | |
CDCl3 | - | - | −126.5 | Q1 | - | - | −29.0 | S4 | [81] | |
C6D6 | −81.6 | T1 | - | - | - | - | −33.0 | S4 | [31] | |
CDCl3 | −78.8 | T1 | −126.0 | Q1 | - | - | −29.2 | S5 | [81] | |
CDCl3 | - | - | −118.2 | Q1 | - | - | −26.0 | S6 | [81] | |
CDCl3 | −81.4 | T2 | - | - | - | - | - | - | [81] | |
CDCl3 | −79.8 | T3 | −129.4 | Q2 | - | - | - | - | [81] | |
CDCl3 | - | - | −130.0 | Q3 | - | - | - | - | [81] | |
CDCl3 | −78.7 −71.4 | T2 T4 | - | - | - | - | - | - | [23] |
No. | Structure | Solvent | δ(Si) core | Tβ−γ | δ(Si) branch | Tβ−γ | δ(Si) spacer | Sβ−γ | Ref. |
---|---|---|---|---|---|---|---|---|---|
10 | CDCl3 | −88.3 | T0-0 | - | - | - | - | [81] | |
THF-D8 | −82.1 | T1-1 | - | - | −34.8 | S3-2 | [77] | ||
11 | CDCl3 | −81.4 | T2-0 | - | - | - | - | [81] | |
57 | CDCl3 | −74.2 | T3-0 | - | - | −40.2 | S2-2 | [33] | |
52 | C6D6 | −54.4 | T5-1 | −76.8 | T2-3 | −31.4 | S3-6 | [37] | |
33 | C6D6 | −55.4 | T6-0 | −76.1 | T2-4 | - | - | [31] | |
51 | CDCl3 | −43.8 | T6-4 | −74.8 | T2-4 | - | - | [21] |
No. | Structure | Solvent | δ(Si) | Tβ−γ | δ(Si) | Qβ−γ | δ(Si) | Sβ−γ | Ref. |
---|---|---|---|---|---|---|---|---|---|
57 | CDCl3 | −74.2 | T3-0 | - | - | −40.2 | S2-2 | [33] | |
58 | C6D6 | −67.8 | T3-3 | - | - | −41.8 −35.4 | S1-2 S3-2 | [45] | |
54 | C6D6 | −80.0 | T1-2 | - | - | −30.0 | S4-2 | [44] | |
−64.6 | T3-5 | −31.7 | S3-4 | ||||||
24 | C6D6 | −80.1 | T1-2 | - | - | −29.8 | S4-2 | [45] | |
−66.0 | T3-6 | ||||||||
47 | CDCl3 | −80.1 | T1-2 | - | - | −30.0 −26.7 | S4-2 S4-4 | [20] | |
−64.8 | T3-6 | ||||||||
−62.3 | T3-6 | ||||||||
40 | C6D6 | −78.3 | T1-2 | −123.0 | Q1-2 | −29.3 −25.1 | S4-2 S5-2 | [45] | |
−59.9 | T3-7 | ||||||||
55 | C6D6 | −78.2 | T1-2 | −109.7 | Q2-3 | −28.7 | S4-2 | [47] | |
−55.7 | T3-7 | −26.6 −24.7 | ? ? | ||||||
41 | C6D6 | −79.1 | T1-2 | −121.8 | Q1-2 | −29.3 −25.2 | S4-2 S5-2 | [45] | |
−50.8 | T3-8 | ||||||||
25 | CDCl3 | −37.1 | T3-9 | −119.8 | Q1-2 | -25.5 | S5-2 | [19] | |
56 | C6D6 | −35.3 | T3-9 | −120.9 | Q1-2 | −26.3 −25.7 −25.6 | ? ? ? | [47] | |
−109.7 | Q2-3 | ||||||||
26 | CDCl3 | −30.3 | T3-9 | −126.8 −110.0 | Q1-1 Q2-3 | −28.5 −27.0 −25.0 | ? ? ? | [84] | |
53 | C6D6 | −77.9 | T1-2 | - | - | −28.6 | S4-3 | [44] | |
−55.1 | T4-6 |
6. Electronic Properties
6.1. General Remarks
No. | Structure | Dendrimertype | λmax (nm) | ε (104) | No. of Si atoms of the longest Si chain | Total no. of Si atoms | Ref. |
---|---|---|---|---|---|---|---|
33 | S-1302 | 240 | 3.4 | 5 | 10 | [31] | |
25 | S-1313 | 265 | 5.2 | 7 | 16 | [47] | |
41 | irregular | 268 | 5.9 | 7 | 15 | [47] | |
24 | S-1312 | 269 | 5.0 | 7 | 13 | [47] | |
40 | irregular | 269 | 6.0 | 7 | 14 | [45] | |
56 | D-1213-6 | 269 | 13.0 | 14 | 32 | [47] | |
53 | D-1212-0 | 271 | 8.2 | 8 | 18 | [44] | |
55 | D-1212-6 | 274 | 13.0 | 14 | 28 | [47] | |
51 | D-1202-0 | 276 | 2.3 | 6 | 14 | [21] | |
44 | irregular | 277 | 6.0 | 7 | 14 | [45] | |
47 | S-2312 | 279 | 9.6 | 11 | 31 | [20] | |
52 | D-1202-2 | 285 | 5.6 | 8 | 16 | [37] | |
26 | S-1343 | 285 | 12.0 | 13 | 31 | [24] | |
54 | D-1212-2 | 292 | 5.5 | 10 | 20 | [44] |
6.2. Conformational Effects
No. | Structure | λmax [nm] | No. of chain Si | Conformation (X-ray) | Av. Si-Si distance | Ref. |
---|---|---|---|---|---|---|
33 | 240 | 5 | OA | 236.0 | [31] | |
51 | 276 | 6 | EAE | 238.6 | [21] | |
25 | 265 | 7 | DAGD | 235.7 | [47] | |
24 | 269 | 7 | DDOD | 235.8 | [47] | |
40 | 269 | 7 7 | ADOD DDOD | 237.4 236.9 | [45] | |
44 | 277 | 7 | ADAD | 237.0 | [45] | |
52 | 285 | 8 | DEDED | 237.2 | [37] | |
53 | 271 | 8 7 | DDCDD DDOD | 237.3 237.2 | [44] | |
47 | 279 | 11 7 | DDODODOD DDOD | 237.6 236.7 | [20] | |
26 | 285 | 13 | ADGCAGGGDA | 237.1 | [24] | |
55 | 274 | 14 7 | DDOAGDGAODD DDOD | 237.7 236.1 | [47] | |
56 | 269 | 14 7 | DAGOGDGOGAD DAGD | 238.2 237.7 | [47] |
6.3. Conformation and σ-conjugation in Dendritic, Branched and Linear Structures
Types of polysilanes | no. of chain Si | no. of chain Si | no. of chain Si |
---|---|---|---|
6 | 8 | 10 | |
linear | |||
λmax/nm (293 K) | 260 | 276 | 284 |
ε/104 | 2.3 | 3.0 | 4.6 |
λmax/nm (77 K) | 265 | 282 | 294 |
ε/104 | 6.8 | 13.4 | 16.0/12.5 |
Ref. | [90] | [90] | [90,106] |
linear with rigid conformation | |||
62 | 63 | 64 | |
conformation | DAA | AAAAA | - |
av. Si-Si distance [pm] | 235.0 | 234.9 | - |
λmax/nm | 267 | 288 | 299 |
ε/104 | 6.7 | 10.0 | 15.0 |
Ref. | [100] | [103] | [106] |
branched | |||
21 | 65 | 66 | |
conformation | DAD | DDADD | DADDADD |
av. Si-Si distance [pm] | 236.8 | 236.7 | 236.1 |
λmax/nm | 257 | 280 | 294 |
ε/104 | 6.6 | 12.0 | 6.9 |
Ref. | [107,108] | [108,109] | [108] |
dendritic | |||
51 | 52 | 54 | |
conformation | EAE | DEDED | - |
av. Si-Si distance [pm] | 238.6 | 237.2 | - |
λmax/nm | 276 | 285 | 292 |
ε/104 | 2.3 | 5.6 | 5.5 |
Ref. | [21] | [37] | [44] |
6.4. Electronic Effects
Compound | λmax (nm) | ε (104) | Conformation (X-ray) | Ref. | |
---|---|---|---|---|---|
27 (X = H) | 259 | 6.9 | ADOA | [21] | |
24 (X = Me) | 269 | 5.0 | DDOD | [47] | |
29 (X = Cl) | 282 | 2.7 | - | [43] | |
30 (X = OH) | 300 | 2.0 | - | [50] | |
l,l-32 | 280 a | 2.2 | DDOD | [42] | |
l,u-32 | 282 | 3.7 | DDED | [42] |
6.5. Emissive Properties
No. | Structure | Dendrimer type | λem1 (nm) | λem2 (nm) | λex (nm) | c (M) | T (K) | Ref. |
---|---|---|---|---|---|---|---|---|
24 | S-1312 | ~330 | 455 | 283 | 5 × 10−5 | 298 | [50] | |
25 | S-1313 | ~330 | 450–460 | 275 | 10−5 | 298 | [47] | |
40 | irregular | ~330 | 450–460 | 275 | 10−5 | 298 | [47] | |
55 | D-1212-6 | ~330 | 450–460 | 275 | 10−5 | 298 | [47] | |
56 | D-1213-6 | ~330 | 450–460 | 275 | 10−5 | 298 | [47] | |
30 | S-1312 | - | 480 | 310 | 5 × 10−5 | 298 | [50] | |
l,l-32 | S-1312 | - | 465 | 300 | 5 × 10−5 | 298 | [50] |
7. Conclusions
Acknowledgments
References
- Miller, A.D.; Michl, J. Polysilane high polymers. Chem. Rev. 1989, 89, 1359–1410. [Google Scholar]
- West, R. Polysilanes. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, UK, 1989; pp. 1207–1240. [Google Scholar]
- Koe, J.R. Organopolysilanes. In Comprehensive Organometallic Chemistry III; Crabtree, R.H., Mingos, D.M.P., Eds.; Elsevier Science Ltd.: Oxford, UK, 2006; Volume 3, pp. 549–650. [Google Scholar]
- Wilson, W.L.; Weidman, T.W. Excited-state dynamics of one- and two-dimensional σ-conjugated silicon frame polymers: Dramatic effects of branching in a series of hexylsilyne-branched poly(hexylmethylsilylene) copolymers. J. Phys. Chem. 1991, 95, 4568–4572. [Google Scholar]
- Watanabe, A.; Miike, H.; Tsutsumi, Y.; Matsuda, M. Photochemical properties of network and branched polysilanes. Macromolecules 1993, 26, 2111–2116. [Google Scholar]
- Maxka, J.; Chrusciel, J.; Sasaki, M.; Matyaszewski, K. Polysilanes with various architectures. Macromol.Symp. 1994, 77, 79–92. [Google Scholar]
- Richter, R.; Roewer, G.; Böhme, U.; Busch, K.; Babonneau, F.; Martin, H.P.; Müller, E. Organosilicon polymers-synthesis, architecture, reactivity and applications. Appl. Organomet. Chem. 1997, 11, 71–106. [Google Scholar]
- Bianconi, P.A.; Weidman, T.W. Poly(n-hexylsilyne): Synthesis and properties of the first alkyl silicon [RSi]n network polymer. J. Am. Chem. Soc. 1988, 10, 2342–2344. [Google Scholar]
- Bianconi, P.A.; Schilling, F.C.; Weidman, T.W. Ultrasound-mediated reductive condensation synthesis of silicon-silicon-bonded network polymers. Macromolecules 1989, 22, 1697–1704. [Google Scholar]
- Furukawa, K.; Fujino, M.; Matsumoto, N. Optical properties of silicon network polymers. Macromolecules 1990, 23, 3423–2426. [Google Scholar]
- Watanabe, A.; Matsuda, M. Electrical and optical properties of heat-treated silicon network polymers. Chem. Lett. 1991, 1101–1104. [Google Scholar]
- Watanabe, A.; Matsuda, M.; Yoshida, Y.; Tagawa, S. Radical ions of polysilynes. In Polymeric Materials for Microelectronic Applications, ACS Symposium Series 1994; Volume 579, pp. 408–424.
- Watanabe, A.; Ito, O.; Matsuda, M.; Suezawa, M.; Sumino, K. Photodegradation of polysilanes studied by far-infrared spectroscopy. Jpn. J. Appl. Phys. 1994, 33, 4133–4134. [Google Scholar]
- Matsumoto, H.; Miyamoto, H.; Kojima, N.; Nagai, Y. The first bicyclo[2.2.0]hexasilane system: Synthesis of decaisopropylhexasilabicyclo[2.2.0]hexane. J. Chem. Soc. Chem. Commun. 1987, 1316–1317. [Google Scholar]
- Watanabe, A.; Fujitsuka, M.; Ito, O.; Miwa, T. Soluble three-dimensional polysilane with organosilicon nanocluster structure. Jpn. J. Appl. Phys. 1997, 36, L1265–L1267. [Google Scholar]
- Watanabe, A.; Fujitsuka, M.; Ito, O.; Miwa, T. Control of silicon dimensionality of polysilanes and their optical properties. Mol. Cryst. Liq. Cryst. 1998, 316, 363–366. [Google Scholar]
- Watanabe, A.; Fujitsuka, M.; Ito, O. Micropatterning of SiO2 film using organosilicon nanocluster as a precursor. Thin Solid Film 1999, 354, 13–18. [Google Scholar]
- Lambert, J.B.; Pflug, J.L.; Stern, C.L. Synthesis and structure of a dendritic polysilane. Angew.Chem. (Int. Ed. Engl.) 1995, 34, 98–99. [Google Scholar]
- Suzuki, H.; Kimata, Y.; Satoh, S.; Kuriyama, A. Polysilane dendrimer. Synthesis and characterization of [2,2-(Me3Si)2Si3Me5]3SiMe. Chem. Lett. 1995, 293–294. [Google Scholar]
- Sekiguchi, A.; Nanjo, M.; Kabuto, C.; Sakurai, H. polysilane dendrimers. J. Am. Chem. Soc. 1995, 117, 4195–4196. [Google Scholar]
- Lambert, J.B.; Pflug, J.L.; Denari, J.M. First-generation dendritic polysilanes. Organometallics 1996, 15, 615–625. [Google Scholar]
- Suzuki, H.; Kuryama, A. Branched polysilanes and production thereof. Jpn. Kokai Tokkyo Koho 1996. JP 8073472 A.. [Google Scholar]
- Herzog, U.; Notheis, C.; Brendler, E.; Roewer, G.; Thomas, B. 29Si NMR investigations on oligosilane dendrimers. Fresenius.J. Anal. Chem. 1997, 357, 503–504. [Google Scholar]
- Lambert, J.B.; Wu, H. Synthesis and crystal structure of a nanometer-scale dendritic polysilane. Organometallics 1998, 17, 4904–4909. [Google Scholar]
- Lambert, J.B.; Basso, E.; Qing, N.; Lim, S.H.; Pflug, J.L. Two-dimensional silicon-29 inadequate as a structural tool for branched and dendritic polysilanes. J. Organomet. Chem. 1998, 554, 113–116. [Google Scholar]
- Marschner, C.; Hengge, E. Stepwise synthesis of functional polysilane dendrimers. In Organosilicon ChemistryIII: From Molecules to Materials, 3rd; Auner, N., Weis, J., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998; pp. 333–336. [Google Scholar]
- Lambert, J.B.; Liu, X.; Wu, H.; Pflug, J.L. Anionic vs. radical intermediates in the fragmentation reactions of dendritic polysilanes. J. Chem. Soc. Perkin Trans. 1999, 2, 2747–2749. [Google Scholar]
- Nanjo, M.; Sunaga, T.; Sekiguchi, A.; Horn, E. Crystal structures of the first generation of phenyl-substituted and permethyl-substituted dendritic polysilanes. Inorg. Chem. Comm. 1999, 2, 203–206. [Google Scholar]
- Lambert, J.B.; Wu, H. Atom connectivity and spectral assignments from the 29Si-29Si INADEQUATE experiment on a nanometer scale dendritic polysilane. Magn. Res. Chem. 2000, 38, 388–389. [Google Scholar]
- Sekiguchi, A.; Lee, V.Y.; Nanjo, M. Lithiosilanes and their application to the synthesis of polysilane dendrimers. Coord. Chem. Rev. 2000, 210, 11–45. [Google Scholar]
- Chtchian, S.; Kempe, R.; Krempner, C. Synthesis, structure and spectroscopic properties of branched oligosilanes. J. Organomet. Chem. 2000, 613, 208–219. [Google Scholar]
- Chtchian, S.; Krempner, C. Synthesis and functionalization of branched oligosilanes. In Organosilicon Chemistry IV: From Molecules to Materials, 4th; Auner, N., Weis, J., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000; pp. 352–355. [Google Scholar]
- Watanabe, A.; Nanjo, M.; Sunaga, T.; Sekiguchi, A. Dynamic of excited state of polysilane dendrimers: Origin of the broad visible emission of branched silicon chains. J. Phys. Chem. A 2001, 105, 6436–6442. [Google Scholar]
- Oh, H.-S.; Omote, M.; Suzuki, K.; Imae, I.; Kawakami, Y. Study on the synthesis of optically active polysilane dendrimer. Polymer Preprints 2001, 42, 194–195. [Google Scholar]
- Lambert, J.B.; Pflug, J.L.; Wu, H.; Liu, X. Dendritic polysilanes. J. Organomet. Chem. 2003, 685, 113–121. [Google Scholar]
- Watanabe, A. Optical properties of polysilanes with various silicon skeletons. J. Organomet. Chem. 2003, 685, 122–133. [Google Scholar]
- Krempner, C.; Reinke, H. Structure and UV spectroscopic properties of a novel dendritic oligosilane. J. Organomet. Chem. 2003, 685, 134–137. [Google Scholar]
- Krempner, C.; Reinke, H. Synthesis and reactivity of a novel oligosilyl anion. J. Organomet. Chem. 2003, 686, 158–163. [Google Scholar]
- Reinke, H.; Krempner, C. Synthesis and reactivity of novel oligosilyl anions. In Organosilicon ChemistryV: From Molecules to Materials, 5th; Auner, N., Weis, J., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2003; pp. 217–222. [Google Scholar]
- Krempner, C.; Chtchian, S.; Reinke, H. First synthesis of a dihydrido functionalized double-cored oligosilane dendrimer. Inorg.Chim. Acta 2004, 357, 3733–3738. [Google Scholar]
- Fischer, R.; Baumgartner, J.; Kickelbick, G.; Hassler, K.; Marschner, C. Adamantanes, nortricyclenes, and dendrimers with extended silicon backbones. Chem. Eur. J. 2004, 10, 1021–1030. [Google Scholar] [CrossRef]
- Krempner, C.; Jäger-Fiedler, U.; Köckerling, M.; Ludwig, R.; Wulf, A. Hydroxyl substituted oligosilane dendrimers – controlling the electronic properties through hydrogen bonding. Angew.Chem. Int. Ed. 2006, 45, 6755–6759. [Google Scholar]
- Krempner, C.; Reinke, H. The unusual absorption behavior of chloro functionalized oligosilane dendrimers. Inorg. Chem. Commun. 2006, 9, 259–262. [Google Scholar]
- Krempner, C.; Köckerling, M.; Mamat, C. Novel double cored oligosilane dendrimers—Conformational dependence of the UV absorption spectra. Chem. Commun. 2006, 720–722. [Google Scholar]
- Krempner, C.; Reinke, H. An approach to dendritic oligosilanes – controlling the conformation through ring formation. Organometallics 2007, 26, 2053–2057. [Google Scholar]
- Mu, T.; Feng, D.; Feng, S. A molecular modeling study of generation-dependent stability of dendritic polysilanes. J. Theoret. Comput. Chem. 2008, 7, 923–931. [Google Scholar] [CrossRef]
- Krempner, C.; Koeckerling, M. Nanoscale double-core oligosilane dendrimers: Synthesis, structure, and electronic properties. Organometallics 2008, 27, 346–352. [Google Scholar]
- Krempner, C.; Jäger-Fiedler, U.; Reinke, H.; Koeckerling, M. Synthesis and structure of titanium and zirconium trisiloxides. Organometallics 2009, 28, 382–385. [Google Scholar]
- Nanjo, M.; Sekiguchi, A. Polysilane dendrimers. In Silicon-Containing Dendritic Polymers; Dvornic, P., Owen, M.J., Eds.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2009; Volume 2, pp. 75–96. [Google Scholar]
- Jaeger-Fiedler, U.; Koeckerling, M.; Reinke, H.; Krempner, C. Discrete oxygen containing oligosilane dendrimers: Modelling oxygen defects in silicon nanomaterials. Chem. Comm. 2010, 46, 4535–4537. [Google Scholar]
- Gilman, H.; Smith, C.L. Tetrakis(trimethylsilyl)silane. J. Am. Chem. Soc. 1964, 86, 1454. [Google Scholar]
- Gilman, H.; Smith, C.L. Tetrakis(trimethylsilyl)silane. J. Organomet. Chem. 1967, 8, 245–253. [Google Scholar]
- Gilman, H.; Holmes, J.M.; Smith, C.L. Branched-chain methylated polysilanes containing a silyl-lithium group. Chem. Ind. (Lond. UK) 1965, 848–849. [Google Scholar]
- Lickiss, P.D.; Smith, C. Silicon derivatives of the metals of Groups 1 and 2. Coord.Chem. Rev. 1995, 145, 75–124. [Google Scholar]
- Tamao, K.; Kawachi, A. Silyl anions. Adv. Organomet. Chem. 1995, 38, 1–58. [Google Scholar]
- Wiberg, N. Sterically overloaded supersilylated main group elements and main group element clusters. Coord. Chem. Rev. 1997, 163, 217–252. [Google Scholar]
- Belzner, J.; Dehnert, U. Alkali and Alkaline Earth Silyl Compounds-Preparation and Structure. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, UK, 1998; Volume 2, pp. 779–825. [Google Scholar]
- Marschner, C. Preparation and reactions of polysilanyl anions and dianions. Organometallics 2006, 25, 2110–2125. [Google Scholar]
- Kiyomori, A.; Kubota, T.; Kaneo, T.; Hasegawa, K.; Watanabe, T. Method for producing tetrakis(trimethylsilyl)silane and tris(trimethylsilyl)silane. Jpn. Kokai Tokkyo Koho 2001. JP 2001192387 A.. [Google Scholar]
- Marsmann, H.C.; Raml, W.; Hengge, E. Silicon-29 nuclear resonance measurements on polysilanes. 2. Isotetrasilanes. Z. Naturforsch. B 1980, 35B, 1541–1547. [Google Scholar]
- Notheis, C.; Brendler, E.; Thomas, B. NMR spectroscopic investigations on methylphenyl-substituted tri- and tetrasilanes. GIT Labor-Fachzeitschrift 1997, 41, 824–826. [Google Scholar]
- Sakurai, H.; Watanabe, T.; Kumada, M. Aluminum chloride-catalyzed reactions of organosilicon compounds. IV. Preparation of tetrakis(chlorodimethylsilyl)silane and -methane. J. Organomet. Chem. 1967, 9, P11–P12. [Google Scholar]
- Ishikawa, M.; Kumada, M.; Sakurai, H. Preparation of some polysilicon halides by aluminum halide catalyzed interchange of methyl and halogen on silicon. J. Organomet. Chem. 1970, 23, 63–69. [Google Scholar]
- Hassler, K. Preparation of functional polysilanes: Tris(chlorodimethylsilyl)methylsilane. Monatsh.Chem. 1986, 117, 613–615. [Google Scholar]
- Kollegger, G.; Hassler, K. Synthesis and properties of functional polysilanes: the tetrasilanes MeSi(SiMe2X)3 and hexasilanes (Me2XSi)2MeSiSiMe(SiMe2X)2, X = Me, H, F, Cl, Br, I. J. Organomet. Chem. 1995, 485, 233–236. [Google Scholar] [CrossRef]
- Herzog, U.; Schulze, N.; Trommer, K.; Roewer, G. Reaction of the Si-Cl bond with trialkyl orthoformates. Preparation of alkoxy-substituted silanes. J. Organomet. Chem. 1997, 547, 133–139. [Google Scholar]
- Notheis, C.; Brendler, E.; Thomas, B. Chlorination of Methylphenyloligosilanes: Products and reactions. In Organosilicon ChemistryIII: From Molecules to Materials, 3rd; Auner, N., Weis, J., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998; pp. 307–311. [Google Scholar]
- Lehnert, R.; Hoeppner, M.; Kelling, H. Silicon-29 NMR investigations on methylchlorodisilanes. Z. Anorg. Allg. Chem. 1990, 591, 209–213. [Google Scholar]
- Herzog, U.; Richter, R.; Brendler, E.; Roewer, G. Methylchlorooligosilanes as products of the base catalyzed disproportionation of various methylchlorodisilanes. J. Organomet. Chem. 1996, 507, 221–228. [Google Scholar]
- Gilman, H.; Smith, C.L. Tris(trimethylsilyl)silyllithium. J. Organomet. Chem. 1968, 14, 91–101. [Google Scholar]
- Gutekunst, G.; Brook, A.G. Tris(trimethylsilyl)silyllithium 3 THF: A stable crystalline silyllithium reagent. J. Organomet. Chem. 1982, 225, 1–3. [Google Scholar]
- Baines, K.M.; Brook, A.G.; Ford, R.R.; Lickiss, P.D.; Saxena, A.X.; Sawyer, W.J.; Behnam, B.A. Photochemical rearrangements of stable silenes. Organometallics 1989, 8, 693–709. [Google Scholar]
- Whittaker, S.M.; Brun, M.-C.; Cervantes-Lee, F.; Pannell, K.H. Synthesis, structure, and reactivity of the permethylated decasilane (Me3Si)3SiSiMe2SiMe2Si(SiMe3)3. J. Organomet. Chem. 1995, 499, 247–252. [Google Scholar]
- Apeloig, Y.; Korogodsky, G.; Bravo-Zhivotovskii, D.; Blaser, D.; Boese, R. The syntheses and molecular structure of a branched oligosilyl anion with a record of nine silicon atoms and of the first branched oligosilyl dianion. Eur. J. Inorg. Chem. 2000, 1091–1095. [Google Scholar]
- Marschner, C. A new and easy route to polysilanylpotassium compounds. Eur. J. Inorg. Chem. 1998, 221–226. [Google Scholar]
- Kayser, C.; Fischer, R.; Baumgartner, J.; Marschner, C. Tailor-made oligosilyl potassium compounds. Organometallics 2002, 21, 1023–1030. [Google Scholar]
- Kayser, C.; Kickelbick, G.; Marschner, C. Simple synthesis of oligosilyl-α,ω-dipotassium compounds. Angew. Chem. (Int. Ed. Engl.) 2002, 41, 989–992. [Google Scholar] [CrossRef]
- Mechtler, C.; Marschner, C. Polysilyldianions: Synthesis and reactivity. Tetrahedron Lett. 1999, 40, 7777–7778. [Google Scholar]
- Note that in relatively unstrained linear and branched oligosilanes the Si-Si distances range from 234 to 236 pm and the Si-Si-Si angles deviate usually only by 3 to 4° from the ideal tetrahedral angle.
- Stanislawski, D.A.; West, R. Silicon-29 and carbon-13 NMR spectra of permethylpolysilanes. J. Organomet. Chem. 1980, 204, 295–305. [Google Scholar]
- Ishikawa, M.; Iyoda, J.; Ikeda, H.; Kotake, K.; Hashimoto, T.; Kumada, M. Aluminum chloride catalyzed skeletal rearrangement of permethylated acyclic polysilanes. J. Am. Chem. Soc. 1981, 103, 4845–4850. [Google Scholar]
- Dzambaski, A.; Baumgartner, J.; Flock, M.; Hassler, K. Conformation control of oligosilanes by trimethylsilyl groups: dodecamethyl-, undecamethyl-2-trimethylsilyl- and decamethyl-2, 4-bis(trimethylsilyl)-n-pentasilane studied by Raman spectroscopy and quantum chemical calculations. Silicon 2010, 1, 225–237. [Google Scholar]
- Lambert et al. [18] reported the tertiary silicon core (T3-9) of polysilane dendrimer 25, to appear at -65.0 ppm in the 29Si-NMR (measured in C6D6). Suzuki et al. [19], however, found the latter signal to be at -37.1 ppm (measured in CDCl3). Measuring 25 again in C6D6 as solvent, we found chemical shifts for the central silicon core and also the other silicon nuclei being almost identical with those reported by Suzuki et al. [19].
- During the preparation of this manuscript we noticed that the 29Si-NMR chemical shift of the central core silicon (T3-9) of polysilane dendrimer 26, reported by Lambert and coworkers [24] to be at -66.1 ppm, did not match the expected chemical shift range for a tertiary silicon nucleus that has 3 silicon nuclei in β-position and 9 silicon nuclei in γ-position (T3-9). Note that the central T3-9 silicon nuclei of 25 and 56 appear at −37.1 ppm and −35.3 ppm, respectively. We independently prepared 26 by treating 3.5 equivalents of K-Si(SiMe3)2SiMe2SiMe2Si(SiMe3)3 with one equivalent of MeSi(SiMe2Cl)3 in hexane. After aqueous workup of the reaction mixture and re-crystallization of the residue from acetone, compound 26 was isolated as a white crystalline material in 16% yield consistent with the results reported earlier by Lambert et al. Compound 26 was characterized by 1H-, 13C and 29Si-NMR spectroscopy. However, 29Si-NMR spectroscopic measurement in CDCl3 revealed the chemical shift of the central core silicon (T3-9) to be at −30.3 ppm. Although we have carried out several 29Si-NMR experiments, including INEPT and DEPT pulse sequences, we could not find any signal at around -66 ppm as reported by Lambert and coworkers.
- Hsiao, Z.-L.; Waymouth, R.M. Free-radical hydrosilylation of poly(phenylsilane): Synthesis of functional polysilanes. J. Am. Chem. Soc. 1994, 116, 9779–9780. [Google Scholar]
- Koe, J.; Powell, D.R.; Buffy, J.J.; Hayase, S.; West, R. Perchloropolysilane: X-ray structure, solid-state 29Si NMR spectroscopy, and reactions of [SiCl2]n. Angew. Chem. Int. Ed. 1998, 37, 1441–1442. [Google Scholar]
- Herzog, U.; West, R. Heterosubstituted polysilanes. Macromolecules 1999, 32, 2210–2214. [Google Scholar]
- Koe, J.; Motanaga, M.; Fujiki, M.; West, R. Synthesis and spectroscopic characterization of heteroatom polysilylenes: Poly(dialkoxysilylene)s and evidence for silicon σ-oxygen n mixing interaction. Macromolecules 2001, 34, 706–712. [Google Scholar]
- Koe, J.R.; Fujiki, M. Heteroatom polysilylenes. Silicon Chem. 2002, 1, 77–87. [Google Scholar]
- Obata, K.; Kira, M. Synthesis, structure, and spectroscopic properties of perhexyloligosilanes. Organometallics 1999, 18, 2216–2222. [Google Scholar] [CrossRef]
- Boberski, W.G.; Allred, A.L. Preparation of permethyloctadecasilane and permethyltetracosasilane. J. Organomet. Chem. 1974, 71, C27–C28. [Google Scholar]
- Boberski, W.G.; Allred, A.L. Properties of long-chain permethylpolysilanes. J. Organomet. Chem. 1975, 88, 65–72. [Google Scholar]
- Maxka, J.; Huang, L.M.; West, R. Synthesis and NMR spectroscopy of permethylpolysilane oligomers Me(SiMe2)10Me, Me(SiMe2)16Me, and Me(Me2Si)22Me. Organometallics 1991, 10, 656–659. [Google Scholar]
- Michl, J.; West, R. Conformations of linear chains. Systematics and suggestions for nomenclature. Acc. Chem. Res. 2000, 33, 821–823. [Google Scholar] [CrossRef]
- West, R. A new theory for rotational isomeric states: polysilanes lead the way. J. Organomet. Chem. 2003, 685, 6–8. [Google Scholar]
- Teramae, H.; Michl, J. Electronic states of linear tetrasilane and polysilanes. Mol. Cryst. Liq. Cryst. 1994, 256, 149–159. [Google Scholar]
- Neumann, F.; Teramae, H.; Downing, J.W.; Michl, J. Gauche, ortho, and anti conformations of saturated A4X10 chains: When will all six conformers exist? J. Am. Chem. Soc. 1998, 120, 573–582. [Google Scholar]
- Albinsson, B.; Antic, D.; Neumann, F.; Michl, J. The conformers of n-Si5Me12: A comparison of Ab initio and molecular mechanics methods. J. Phys. Chem. A 1999, 103, 2184–2196. [Google Scholar]
- Tsuji, H.; Michl, J.; Tamao, K. Recent experimental and theoretical aspects of the conformational dependence of UV absorption of short chain peralkylated oligosilanes. J. Organomet. Chem. 2003, 685, 9–14. [Google Scholar]
- Mazieres, S.; Raymond, M.K.; Raabe, G.; Prodi, A.; Michl, J. [2]Staffane rod as a molecular rack for unravelling conformer properties: Proposed singlet excitation localization isomerism in anti,anti,anti-Hexasilanes. J. Am. Chem. Soc. 1997, 119, 6682–6683. [Google Scholar]
- Tamao, K.; Tsuji, H.; Terada, M.; Asahara, M.; Yamaguchi, S.; Toshimitsu, A. Conformation control of oligosilanes based on configurationally constrained bicyclic disilane units. Angew. Chem. Int. Ed. 2000, 39, 3287–3290. [Google Scholar]
- Tsuji, H.; Terada, M.; Toshimitsu, A.; Tamao, K. σ–σ* Transition in anti,cisoid alternating oligosilanes: Clear-cut evidence for suppression of conjugation effect by a cisoid turn. J. Am. Chem. Soc. 2003, 125, 7486–7487. [Google Scholar]
- Fukazawa, A.; Tsuji, H.; Tamao, K. All-anti-octasilane: Conformation control of silicon chains using the robust bicyclic trisilane as the building block. J. Am. Chem. Soc. 2006, 128, 6800–6801. [Google Scholar]
- Tsuji, H.; Fukazawa, A.; Yamaguchi, S.; Toshimitsu, A.; Tamao, K. All-anti pentasilane: Conformation control of oligosilanes based on bis(tetramethylene)-tethered trisilane unit. Organometallics 2004, 23, 3375–3377. [Google Scholar]
- Casher, D.L.; Tsuji, H.; Sano, A.; Katkevics, M.; Toshimitsu, A.; Tamao, K.; Kubota, M.; Kobayashi, T.; Ottosson, C.H.; David, D.E.; et al. The disilane chromophore: Photoelectron and electronic spectra of hexaalkyldisilanes and 1,(n+2)-Disila[n.n.n]propellanes. J. Phys. Chem. A 2003, 107, 3559–3566. [Google Scholar]
- Sakamoto, K.; Naruoka, T.; Kira, M. Regulation of main-chain conformation of permethyldecasilane by complexation with γ-cyclodextrin. Chem. Lett. 2003, 32, 380–381. [Google Scholar]
- Lambert, J.B.; Pflug, J.L.; Allgeier, A.M.; Campbell, D.J.; Higgins, T.B.; Singewald, E.T.; Stern, C.L. A branched polysilane. Acta Cryst. C 1995, C51, 713–715. [Google Scholar]
- Baumgartner, J.; Frank, D.; Kayser, C.; Marschner, C. comparative study of structural aspects of branched oligosilanes. Organometallics 2005, 24, 750–761. [Google Scholar]
- Wallner, A.; Wagner, H.; Baumgartner, J.; Marschner, C.; Rohm, H.W.; Koeckerling, M.; Krempner, C. Structure, conformation, and UV absorption behavior of partially trimethylsilylated oligosilane chains. Organometallics 2008, 27, 5221–5229. [Google Scholar]
- Krempner, C.; Flemming, A.; Koeckerling, M.; Ludwig, R.; Miethchen, R. Twisted oxygen containing oligosilanes: Unprecendented examples of σ–n mixed conjugated systems. Chem. Comm. 2007, 1810–1812. [Google Scholar]
- Krempner, C.; Kopf, J.; Mamat, K.; Reinke, H.; Spannenberg, A. Novel polysilanoles via selective functionalization on oligosilanes. Angew.Chem. (Int. Ed. Engl.) 2004, 43, 5406–5408. [Google Scholar] [CrossRef]
- Stueger, H.; Albering, J.; Flock, M.; Fuerpass, G.; Mitterfellner, T. cis,cis-1,3,5-trihydroxynonamethylcyclohexasilane: A cyclopolysilane with unusual properties. Organometallics 2011, 30, 2531–2538. [Google Scholar]
- Stueger, H.; Fuerpass, G.; Baumgartner, J.; Mitterfellner, T.; Flock, M. Molecular structure and UV absorption spectra of OH and NH2 derivatives of dodecamethylcyclohexasilane: A combined experimental and computational study. Z. Naturforsch. B 2009, 64, 1598–1606. [Google Scholar]
- Stueger, H.; Fuerpass, G.; Renger, K.; Baumgartner, J. Synthesis, structures, and unusual photoluminescence of O- and N-functional cyclohexasilanes. Organometallics 2005, 24, 6374–6381. [Google Scholar] [CrossRef]
- Renger, K.; Kleewein, A.; Stueger, H. Fluorescence of siloxy substituted cyclohexasilanes. Phosphorus Sulfur Silicon. 2001, 169, 449–452. [Google Scholar]
- Takeda, K.; Shiraishi, K. Electronic structure of silicon-oxygen high polymers. Solid State Commun. 1993, 85, 301–305. [Google Scholar]
- Pitt, C.G. Ultraviolet absorption spectra of derivatives of polysilanes. A probe of (p→d)π bonding in organosilicon compounds. J. Am. Chem. Soc. 1969, 91, 6613–6622. [Google Scholar] [CrossRef]
- Brus, L. Luminescence of silicon materials: Chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon. J. Phys. Chem. 1994, 98, 3575–3581. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Krempner, C. Polysilane Dendrimers. Polymers 2012, 4, 408-447. https://doi.org/10.3390/polym4010408
Krempner C. Polysilane Dendrimers. Polymers. 2012; 4(1):408-447. https://doi.org/10.3390/polym4010408
Chicago/Turabian StyleKrempner, Clemens. 2012. "Polysilane Dendrimers" Polymers 4, no. 1: 408-447. https://doi.org/10.3390/polym4010408