Innovative Materials for High-Performance Tin-Based Perovskite Solar Cells: A Review
Abstract
:1. Introduction
2. Application of Polymeric Materials in Tin-Based Chalcogenide Solar Cells
2.1. Polymer Materials at the Buried Interface of Perovskite Films
2.2. Polymer Materials in the Perovskite Precursor Solution
2.3. Polymer Materials on Top of Perovskite Films
3. Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- NREL Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/images/cell-pv-eff-emergingpv.jpg (accessed on 28 September 2024).
- Assirey, E.A.R. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liang, Q.; Li, G.; Ji, T.; Liu, Y.; Fan, M.; Hao, Y.; Liu, S.; Wu, Y.; Cui, Y. Single-crystalline lead halide perovskite wafers for high performance photodetectors. J. Mater. Chem. C 2019, 7, 8357–8363. [Google Scholar] [CrossRef]
- Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T.C.; Lam, Y.M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Wehrenfennig, C.; Eperon, G.E.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584–1589. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Graetzel, M.; Mhaisalkar, S.; Sum, T.C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef]
- Meggiolaro, D.; Motti, S.G.; Mosconi, E.; Barker, A.J.; Ball, J.; Perini, C.A.R.; Deschler, F.; Petrozza, A.; de Angelis, F. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 2018, 11, 702–713. [Google Scholar] [CrossRef]
- Steirer, K.X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J.J. Defect Tolerance in Methylammonium Lead Triiodide Perovskite. ACS Energy Lett. 2016, 1, 360–366. [Google Scholar] [CrossRef]
- D’Innocenzo, V.; Grancini, G.; Alcocer, M.J.P.; Kandada, A.R.S.; Stranks, S.D.; Lee, M.M.; Lanzani, G.; Snaith, H.J.; Petrozza, A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586. [Google Scholar] [CrossRef]
- Zhang, W.; Saliba, M.; Stranks, S.D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H.J. Enhancement of Perovskite-Based Solar Cells Employing Core-Shell Metal Nanoparticles. Nano Lett. 2013, 13, 4505–4510. [Google Scholar] [CrossRef] [PubMed]
- Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 2016, 15, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Hailegnaw, B.; Kirmayer, S.; Edri, E.; Hodes, G.; Cahen, D. Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.I.; An, Y.-J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 2021, 402, 124034. [Google Scholar] [CrossRef]
- Li, Z.; Wu, X.; Wu, S.; Gao, D.; Dong, H.; Huang, F.; Hu, X.; Jen, A.K.Y.; Zhu, Z. An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy 2022, 93, 106853. [Google Scholar] [CrossRef]
- Liu, F.-W.; Biesold, G.; Zhang, M.; Lawless, R.; Correa-Baena, J.-P.; Chueh, Y.-L.; Lin, Z. Recycling and recovery of perovskite solar cells. Mater. Today 2021, 43, 185–197. [Google Scholar] [CrossRef]
- Chen, J.; Luo, J.; Hou, E.; Song, P.; Li, Y.; Sun, C.; Feng, W.; Cheng, S.; Zhang, H.; Xie, L.; et al. Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives. Nat. Photonics 2024, 18, 464–470. [Google Scholar] [CrossRef]
- Meng, W.; Wang, X.; Xiao, Z.; Wang, J.; Mitzi, D.B.; Yan, Y. Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites. J. Phys. Chem. Lett. 2017, 8, 2999–3007. [Google Scholar] [CrossRef]
- Tao, S.X.; Cao, X.; Bobbert, P.A. Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Sci. Rep. 2017, 7, 14386. [Google Scholar] [CrossRef]
- Travis, W.; Glover, E.N.K.; Bronstein, H.; Scanlon, D.O.; Palgrave, R.G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556. [Google Scholar] [CrossRef]
- Lim, E.L.; Hagfeldt, A.; Bi, D. Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering. Energy Environ. Sci. 2021, 14, 3256–3300. [Google Scholar] [CrossRef]
- Babayigit, A.; Thanh, D.D.; Ethirajan, A.; Manca, J.; Muller, M.; Boyen, H.-G.; Conings, B. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 2016, 6, 18721. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.-G.; Chen, M.; Zhou, Y.; Dai, J.; Ma, L.; Padture, N.P.; Zeng, X.C. Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. Joule 2018, 2, 1231–1241. [Google Scholar] [CrossRef]
- Fang, H.-H.; Adjokatse, S.; Shao, S.; Even, J.; Loi, M.A. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites. Nat. Commun. 2018, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Konstantakou, M.; Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 11518–11549. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Guo, P.; Zhou, N.; Marks, T.J.; Chang, R.P.H.; Kanatzidis, M.G. Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 11445–11452. [Google Scholar] [CrossRef]
- Pitaro, M.; Tekelenburg, E.K.; Shao, S.; Loi, M.A. Tin Halide Perovskites: From Fundamental Properties to Solar Cells. Adv. Mater. 2022, 34, 2105844. [Google Scholar] [CrossRef]
- Cao, J.; Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 1286–1325. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Xie, F.; Yang, X.; Han, L. Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy-Level Mismatch. ACS Energy Lett. 2018, 3, 1116–1121. [Google Scholar] [CrossRef]
- Xu, L.; Feng, X.; Jia, W.; Lv, W.; Mei, A.; Zhou, Y.; Zhang, Q.; Chen, R.; Huang, W. Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 4292–4317. [Google Scholar] [CrossRef]
- Ma, L.; Hao, F.; Stoumpos, C.C.; Phelan, B.T.; Wasielewski, M.R.; Kanatzidis, M.G. Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CH3NH3SnI3 Films. J. Am. Chem. Soc. 2016, 138, 14750–14755. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Heo, J.H.; Lee, H.J.; Kim, H.; Im, S.H.; Hong, K.-H. Compositional Design for High-Efficiency All-Inorganic Tin Halide Perovskite Solar Cells. ACS Energy Lett. 2023, 8, 5061–5069. [Google Scholar] [CrossRef]
- Teng, T.-Y.; Su, Z.-H.; Hu, F.; Chen, C.-H.; Chen, J.; Wang, K.-L.; Xue, D.; Gao, X.-Y.; Wang, Z.-K. Electronically Manipulated Molecular Strategy Enabling Highly Efficient Tin Perovskite Photovoltaics. Angew. Chem.-Int. Ed. 2024, 63, e202318133. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, Y.; Zhou, J.; Liu, L.; Ju, M.; Wang, N. Mitigating Surface Defects in Tin-Based Perovskite Films with α-Tocopherol for Enhanced Photovoltaic Performance. Small 2023, 20, e2307373. [Google Scholar] [CrossRef] [PubMed]
- Bobba, R.S.; Ghimire, N.; Faheem, M.B.; Mabrouk, S.; Baniya, A.; Narwal, N.; Zhang, Y.; Kaswekar, P.I.; Li, H.; Saud, M.B.; et al. Thioacetamide-Assisted Crystallization of Lead-Free Perovskite Solar Cells for Improved Efficiency and Stability. Sol. RRL 2023, 7, 2300191. [Google Scholar] [CrossRef]
- Kuan, C.-H.; Liao, T.-S.; Narra, S.; Tsai, Y.-W.; Lin, J.-M.; Chen, G.-R.; Diau, E.W.-G. Co-Cation Engineering via Mixing of Acetamidinium and Rubidium in FASnI3 for Tin Perovskite Solar Cells to Attain 14.5% Efficiency. J. Phys. Chem. Lett. 2024, 15, 7763–7769. [Google Scholar] [CrossRef]
- Li, T.; He, F.; Liang, J.; Qi, Y. Functional layers in efficient and stable inverted tin-based perovskite solar cells. Joule 2023, 7, 1966–1991. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, T.; Zhou, Y. Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4-ethylenedioxythiophene), and Applications in Solution-Processed Photovoltaics. Adv. Funct. Mater. 2020, 30, 2006213. [Google Scholar] [CrossRef]
- Shih, C.-C.; Wu, C.-G. Synergistic Engineering of the Conductivity and Surface Properties of PEDOT:PSS-Based HTLs for Inverted Tin Perovskite Solar Cells to Achieve Efficiency over 10%. ACS Appl. Mater. Interfaces 2022, 14, 16125–16135. [Google Scholar] [CrossRef]
- Thomas, S.A.; Hamill, J.C., Jr.; White, S.J.O.; Loo, Y.-L. Chemical and Structural Degradation of CH3NH3PbI3 Propagate from PEDOT:PSS Interface in the Presence of Humidity. Adv. Mater. Interfaces 2021, 8, 2100505. [Google Scholar] [CrossRef]
- Lanzetta, L.; Webb, T.; Zibouche, N.; Liang, X.; Ding, D.; Min, G.; Westbrook, R.J.E.; Gaggio, B.; Macdonald, T.J.; Islam, M.S.; et al. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat. Commun. 2021, 12, 2853. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, D.; Aktas, E.; Ponti, C.; Pascual, J.; Li, G.; Li, M.; Nasti, G.; Alharthi, F.; Mura, F.; Abate, A. Enabling water-free PEDOT as hole selective layer in lead-free tin perovskite solar cells. Mater. Adv. 2022, 3, 9083–9089. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Lanzetta, L.; Liang, X.; Min, G.; Giza, M.; Macdonald, T.J.; Haque, S.A. Ultrathin polymethylmethacrylate interlayers boost performance of hybrid tin halide perovskite solar cells. Chem. Commun. 2021, 57, 5047–5050. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Li, H.; Xu, Y.; Yu, Q. Amplifying Hole Extraction Characteristics of PEDOT:PSS via Post-treatment with Aromatic Diammonium Acetates for Tin Perovskite Solar Cells. ACS Energy Lett. 2023, 8, 3280–3287. [Google Scholar] [CrossRef]
- Kuan, C.-H.; Balasaravanan, R.; Hsu, S.-M.; Ni, J.-S.; Tsai, Y.-T.; Zhang, Z.-X.; Chen, M.-C.; Diau, E.W.-G. Dopant-Free Pyrrolopyrrole-Based (PPr) Polymeric Hole-Transporting Materials for Efficient Tin-Based Perovskite Solar Cells with Stability Over 6000 h. Adv. Mater. 2023, 35, 2300681. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Bi, H.; Baranwal, A.K.; Kapil, G.; Sanehira, Y.; Liu, J.; Liu, D.; Shen, Q.; Hayase, S. Enhancement of Efficiency and Stability for Tin Halide Perovskite Solar Cells by Using Improved Doping Method. Adv. Opt. Mater. 2024, 12, 2300962. [Google Scholar] [CrossRef]
- Liu, X.; Wu, T.; Zhang, C.; Zhang, Y.; Segawa, H.; Han, L. Interface Energy-Level Management toward Efficient Tin Perovskite Solar Cells with Hole-Transport-Layer-Free Structure. Adv. Funct. Mater. 2021, 31, 2106560. [Google Scholar] [CrossRef]
- Wang, L.; Chen, M.; Yang, S.; Uezono, N.; Miao, Q.; Kapil, G.; Baranwal, A.K.; Sanehira, Y.; Wang, D.; Liu, D.; et al. SnOx as Bottom Hole Extraction Layer and Top In Situ Protection Layer Yields over 14% Efficiency in Sn-Based Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 3703–3708. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; Xian, Y.; Fu, S.; Abudulimu, A.; Li, D.-B.; Friedl, J.D.; Li, Y.; Neupane, S.; Tumusange, M.S.; et al. Incorporating Potassium Citrate to Improve the Performance of Tin-Lead Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2301218. [Google Scholar] [CrossRef]
- Yang, W.-F.; Cao, J.-J.; Chen, J.; Wang, K.-L.; Dong, C.; Wang, Z.-K.; Liao, L.-S. Nicotinamide-Modified PEDOT:PSS for High Performance Indoor and Outdoor Tin Perovskite Photovoltaics. Sol. RRL 2021, 5, 2100713. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, M.; Li, Y.; Lin, F.R.; Jen, A.K.Y. Rational molecular design of multifunctional self-assembled monolayers for efficient hole selection and buried interface passivation in inverted perovskite solar cells. Chem. Sci. 2024, 15, 2778–2785. [Google Scholar] [CrossRef] [PubMed]
- Pitaro, M.; Alonso, J.S.; di Mario, L.; Romero, D.G.; Tran, K.; Zaharia, T.; Johansson, M.B.; Johansson, E.M.J.; Loi, M.A.; Pitaro, M.; et al. A carbazole-based self-assembled monolayer as the hole transport layer for efficient and stable Cs0.25FA0.75Sn0.5Pb0.5I3 solar cells. J. Mater. Chem. A 2023, 11, 11755–11766. [Google Scholar] [CrossRef]
- Kapil, G.; Bessho, T.; Sanehira, Y.; Sahamir, S.R.; Chen, M.; Baranwal, A.K.; Liu, D.; Sono, Y.; Hirotani, D.; Nomura, D.; et al. Tin-Lead Perovskite Solar Cells Fabricated on Hole Selective Monolayers. ACS Energy Lett. 2022, 7, 966–974. [Google Scholar] [CrossRef]
- Aktas, E.; Poli, I.; Ponti, C.; Li, G.; Olivati, A.; di Girolamo, D.; Alharthi, F.A.; Li, M.; Palomares, E.; Petrozza, A.; et al. One-Step Solution Deposition of Tin-Perovskite onto a Self-Assembled Monolayer with a DMSO-Free Solvent System. ACS Energy Lett. 2023, 8, 5170–5174. [Google Scholar] [CrossRef] [PubMed]
- Afraj, S.N.N.; Kuan, C.-H.; Lin, J.-S.; Ni, J.-S.; Velusamy, A.; Chen, M.-C.; Diau, E.W.-G. Quinoxaline-Based X-Shaped Sensitizers as Self-Assembled Monolayer for Tin Perovskite Solar cells. Adv. Funct. Mater. 2023, 33, 2213939. [Google Scholar] [CrossRef]
- Li, B.; Zhang, C.; Gao, D.; Sun, X.; Zhang, S.; Li, Z.; Gong, J.; Li, S.; Zhu, Z. Suppressing Oxidation at Perovskite-NiOx Interface for Efficient and Stable Tin Perovskite Solar Cells. Adv. Mater. 2024, 36, 2309768. [Google Scholar] [CrossRef]
- Cao, K.; Ning, H.; Xu, N.; Zuo, W.; Zhang, Y.; Yang, M.; Xia, J.; Liu, L.; Chen, S. Tailoring the buried interface with self-assembled 2-chloroethylphosphonic acid for defect reduction and improved performance of tin-based perovskite solar cells. J. Mater. Chem. A 2024, 12, 17444–17452. [Google Scholar] [CrossRef]
- Chen, M.; Kapil, G.; Wang, L.; Sahamir, S.R.K.; Baranwal, A.; Nishimura, K.; Sanehira, Y.; Zhang, Z.; Kamarudin, M.A.; Shen, Q.; et al. High performance wide bandgap Lead-free perovskite solar cells by monolayer engineering. Chem. Eng. J. 2022, 436, 135196. [Google Scholar] [CrossRef]
- Song, D.; Narra, S.; Li, M.-Y.; Lin, J.-S.; Diau, E.W.-G. Interfacial Engineering with a Hole-Selective Self-Assembled Monolayer for Tin Perovskite Solar Cells via a Two-Step Fabrication. ACS Energy Lett. 2021, 6, 4179–4186. [Google Scholar] [CrossRef]
- Dai, Z.; Yadavalli, S.K.; Chen, M.; Abbaspourtamijani, A.; Qi, Y.; Padture, N.P. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 2021, 372, 618–622. [Google Scholar] [CrossRef]
- Tai, Q.; Guo, X.; Tang, G.; You, P.; Ng, T.-W.; Shen, D.; Cao, J.; Liu, C.-K.; Wang, N.; Zhu, Y.; et al. Antioxidant Grain Passivation for Air-Stable Tin-Based Perovskite Solar Cells. Angew. Chem.-Int. Ed. 2019, 58, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zang, Z.; Zhou, Y.; Li, H.; Wei, Q.; Ning, Z. Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Technology. Acc. Mater. Res. 2021, 2, 210–219. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, X.; Chen, H.; Shang, Y.; Liu, H.; Wei, J.; Zhou, W.; He, H.; Liu, W.; Ning, Z. 2D-Quasi-2D-3D Hierarchy Structure for Tin Perovskite Solar Cells with Enhanced Efficiency and Stability. Joule 2018, 2, 2732–2743. [Google Scholar] [CrossRef]
- Chen, C.; Song, Z.; Xiao, C.; Zhao, D.; Shrestha, N.; Li, C.; Yang, G.; Yao, F.; Zheng, X.; Ellingson, R.J.; et al. Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 2019, 61, 141–147. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L. Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 2016, 4, 17104–17110. [Google Scholar] [CrossRef]
- Gupta, S.; Bendikov, T.; Hodes, G.; Cahen, D. CsSnBr3, A Lead-Free Halide Perovskite for Long-Term Solar Cell Application: Insights on SnF2 Addition. ACS Energy Lett. 2016, 1, 1028–1033. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Z.; Zou, S.; Lai, H.; Zhang, Z.; Luo, J.; Huang, Y.; He, R.; Jin, J.; Yi, Z.; et al. Dual-site passivation of tin-related defects enabling efficient lead-free tin perovskite solar cells. Nano Energy 2022, 103, 107818. [Google Scholar] [CrossRef]
- Yu, B.-B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z. Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. Adv. Mater. 2021, 33, 2102055. [Google Scholar] [CrossRef]
- Wang, T.; Tai, Q.; Guo, X.; Cao, J.; Liu, C.-K.; Wang, N.; Shen, D.; Zhu, Y.; Lee, C.-S.; Yan, F. Highly Air-Stable Tin-Based Perovskite Solar Cells through Grain-Surface Protection by Gallic Acid. ACS Energy Lett. 2020, 5, 1741–1749. [Google Scholar] [CrossRef]
- Nishimura, K.; Kamarudin, M.A.; Hirotani, D.; Hamada, K.; Shen, Q.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 2020, 74, 104858. [Google Scholar] [CrossRef]
- Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q. Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 2018, 49, 411–418. [Google Scholar] [CrossRef]
- Wang, C.; Gu, F.; Zhao, Z.; Rao, H.; Qiu, Y.; Cai, Z.; Zhan, G.; Li, X.; Sun, B.; Yu, X.; et al. Self-Repairing Tin-Based Perovskite Solar Cells with a Breakthrough Efficiency Over 11%. Adv. Mater. 2020, 32, 1907623. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, C.; Grice, C.R.; Shrestha, N.; Zhao, D.; Liao, W.; Guan, L.; Awni, R.A.; Meng, W.; Cimaroli, A.J.; et al. Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 1177–1182. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, X.; Yu, D.; Yu, N.; Ning, Z.; Mi, Q. Smooth and Compact FASnI3 Films for Lead-Free Perovskite Solar Cells with over 14% Efficiency. ACS Energy Lett. 2022, 7, 2079–2083. [Google Scholar] [CrossRef]
- Zhou, X.; Peng, W.; Liu, Z.; Zhang, Y.; Zhang, L.; Zhang, M.; Liu, C.; Yan, L.; Wang, X.; Xu, B. Additive engineering with 2,8-dibromo-dibenzothiophene-S,S-dioxide enabled tin-based perovskite solar cells with 14.98% power conversion efficiency. Energy Environ. Sci. 2024, 17, 2837–2844. [Google Scholar] [CrossRef]
- Jokar, E.; Chien, C.-H.; Tsai, C.-M.; Fathi, A.; Diau, E.W.-G. Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Adv. Mater. 2019, 31, 1804835. [Google Scholar] [CrossRef]
- Nishimura, K.; Hirotani, D.; Kamarudin, M.A.; Shen, Q.; Toyoda, T.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. Relationship between Lattice Strain and Efficiency for Sn-Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 31105–31110. [Google Scholar] [CrossRef]
- Wheeler, S.; Bryant, D.; Troughton, J.; Kirchartz, T.; Watson, T.; Nelson, J.; Durrant, J.R. Transient Optoelectronic Analysis of the Impact of Material Energetics and Recombination Kinetics on the Open-Circuit Voltage of Hybrid Perovskite Solar Cells. J. Phys. Chem. C 2017, 121, 13496–13506. [Google Scholar] [CrossRef]
- Wu, C.G.; Chiang, C.H.; Chang, S.H. A perovskite cell with a record-high-Voc of 1.61 V based on solvent annealed CH3NH3PbBr3/ICBA active layer. Nanoscale 2016, 8, 4077–4085. [Google Scholar] [CrossRef]
- Rajagopal, A.; Yang, Z.B.; Jo, S.B.; Braly, I.L.; Liang, P.W.; Hillhouse, H.W.; Jen, A.K.Y. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage. Adv. Mater. 2017, 29, 1702140. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L.; et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 2020, 11, 1245. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, H.; Cheng, S.; Chen, J.; Xing, Y.; Nan, Z.; Yang, P.; Wang, Y.; Zhao, X.; Xie, L.; et al. Multidentate Fullerenes Enable Tunable and Robust Interfacial Bonding for Efficient Tin-Based Perovskite Solar Cells. Adv. Mater. 2024. ahead of print. [Google Scholar] [CrossRef]
- Hou, E.; Chen, J.; Luo, J.; Fan, Y.; Sun, C.; Ding, Y.; Xu, P.; Zhang, H.; Cheng, S.; Zhao, X.; et al. Cross-Linkable Fullerene Enables Elastic and Conductive Grain Boundaries for Efficient and Wearable Tin-Based Perovskite Solar Cells. Angew. Chem.-Int. Ed. 2024, 63, e202402775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, J.; Bi, H.; Wang, L.; Shen, Q.; Hayase, S. Over 14% efficiency of highly reproducible Sn perovskite solar cell via defect passivation and morphology repairment. Chem. Eng. J. 2024, 483, 149345. [Google Scholar] [CrossRef]
- Zang, Z.; Ma, M.; Jiang, X.; Zhou, W.; Seriwattanachai, C.; Kanjanaboos, P.; Ning, Z. Efficient quasi-2D tin perovskite solar cells based on mixed monoammonium and diammonium terminal molecules. Mater. Chem. Front. 2024, 8, 1827–1834. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.; Jeong, M.; Park, B.; Kim, S.; Park, J.; Cho, K. Molecularly Engineered Alicyclic Organic Spacers for 2D/3D Hybrid Tin-based Perovskite Solar Cells. Small 2024. ahead of print. [Google Scholar] [CrossRef]
- Chan, P.F.; Qin, M.; Su, C.-J.; Ye, L.; Wang, X.; Wang, Y.; Guan, X.; Lu, Z.; Li, G.; Ngai, T.; et al. iso-BAI Guided Surface Recrystallization for Over 14% Tin Halide Perovskite Solar Cells. Adv. Sci. 2024, 11, e2309668. [Google Scholar] [CrossRef]
Materials | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|
Aromatic Diammonium Acetate Salts | 0.826 | 20.7 | 70.8 | 12.1 | [45] |
Trimethoxy (3,3,3-Trifluoropropyl)-silane | 0.910 | 22.6 | 70.4 | 14.36 | [34] |
X-shaped quinoxaline-based organic dyes | 0.574 | 21.1 | 68.8 | 8.32 | [56] |
(4-(7H-dibenzo [c,g]carbazol-7-yl)ethyl)phosphonic acid | 0.825 | 23.3 | 74.0 | 14.19 | [57] |
2-chloroethylphosphonic acid | 0.640 | 23.2 | 71.8 | 10.65 | [58] |
[2-(9H-carbazol-9-yl)ethyl]phosphonic acid | 0.740 | 16.2 | 73.0 | 8.66 | [59] |
Ethylenediammonium halide salts | 0.817 | 22.5 | 77.4 | 14.23 | [68] |
Trimethylthiourea | 0.920 | 20.4 | 76.7 | 14.30 | [75] |
2,8-dibromo-dibenzothiophene-S,S-dioxide | 0.790 | 23.9 | 79.5 | 14.98 | [76] |
Pyridyl-substituted fulleropyrrolidines | 0.856 | 24.8 | 72.4 | 15.38 | [18] |
[6,6]-phenyl-C61-butyric acid methyl ester | 0.949 | 17.4 | 74.9 | 12.42 | [82] |
Multidentate fullerene molecules with 3, 4, 5, and 6 diethylmalonate groups | 0.860 | 24.5 | 71.1 | 15.05 | [83] |
Thioctic acid functionalized C60 fulleropyrrolidinium iodide | 0.866 | 24.6 | 70.0 | 14.91 | [84] |
Polymethyl-phenyl-silane | 0.820 | 24.3 | 71.0 | 14.18 | [85] |
Mixed monoammonium and diammonium terminal ligands | 0.900 | 20.7 | 76.9 | 14.31 | [86] |
Morpholinium iodide | 0.803 | 20.6 | 73.1 | 12.04 | [87] |
Iso-butylammonium iodide | 0.719 | 26.1 | 75.7 | 14.20 | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, J.; Zhong, J.; Yu, J.; Pan, X. Innovative Materials for High-Performance Tin-Based Perovskite Solar Cells: A Review. Polymers 2024, 16, 3053. https://doi.org/10.3390/polym16213053
Wang X, Yang J, Zhong J, Yu J, Pan X. Innovative Materials for High-Performance Tin-Based Perovskite Solar Cells: A Review. Polymers. 2024; 16(21):3053. https://doi.org/10.3390/polym16213053
Chicago/Turabian StyleWang, Xiansheng, Jianjun Yang, Jian Zhong, Junsheng Yu, and Xinjian Pan. 2024. "Innovative Materials for High-Performance Tin-Based Perovskite Solar Cells: A Review" Polymers 16, no. 21: 3053. https://doi.org/10.3390/polym16213053