Surface Roughness and Grain Size Variation When 3D Printing Polyamide 11 Parts Using Selective Laser Sintering
Abstract
:1. Introduction
1.1. Sintering Process
1.2. Related Work
2. Materials and Methods
- Gaussian S-filter with cut-off wavelength at 2.5 m from ISO 16610-21 [62] to remove the micro-roughness due to the instrument noise. We neglected this filter for the Sa, Sq analysis, as the micro-roughness due to the noise of the instrument was more dispersed and might cut out some imperfections of the samples.
- Gaussian L-filter with cut-off wavelength at 0.8 mm from ISO 16610-21 [62] to separate waviness from roughness. While the value does not accord with the specifications for mechanical and industrial components, our intent was to study the variance of the values among different samples and we thus preferred cut-off wavelengths that could better display the frequency of the roughness profile. Since 0.8 mm is a standard value, we applied it to curved and flat walls without distinction. It was not useful to apply this filter for the areal roughness, as we levelled the samples with an LS plane that could flatten a quarter of a hemisphere removing all the waviness.
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
GLM | General linear model |
HSD | Honest significant difference |
PA | Polyamide |
Ra | Average roughness |
Rq | Root mean square roughness |
Sa | Arithmetical mean height |
SLS | Selective laser sintering |
Sq | Root mean square surface height |
References
- Golhin, A.P.; Tonello, R.; Frisvad, J.R.; Grammatikos, S.; Strandlie, A. Surface roughness of as-printed polymers: A comprehensive review. Int. J. Adv. Manuf. Technol. 2023, 127, 987–1043. [Google Scholar] [CrossRef]
- Klatzky, R.L.; Lederman, S.J. Multisensory texture perception. In Multisensory Object Perception in the Primate Brain; Kaiser, J., Naumer, M., Eds.; Springer: New York, NY, USA, 2010; pp. 211–230. [Google Scholar] [CrossRef]
- Li, Y.; Linke, B.S.; Voet, H.; Falk, B.; Schmitt, R.; Lam, M. Cost, sustainability and surface roughness quality—A comprehensive analysis of products made with personal 3D printers. CIRP J. Manuf. Sci. Technol. 2017, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Launhardt, M.; Wörz, A.; Loderer, A.; Laumer, T.; Drummer, D.; Hausotte, T.; Schmidt, M. Detecting surface roughness on SLS parts with various measuring techniques. Polym. Test. 2016, 53, 217–226. [Google Scholar] [CrossRef]
- Kozior, T. The influence of selected selective laser sintering technology process parameters on stress relaxation, mass of models, and their surface texture quality. 3D Print. Addit. Manuf. 2020, 7, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Veit, D. Polyamide. In Fibers: History, Production, Properties, Market; Springer: Berlin/Heidelberg, Germany, 2022; pp. 649–680. [Google Scholar] [CrossRef]
- Dechet, M.A.; Goblirsch, A.; Romeis, S.; Zhao, M.; Lanyi, F.J.; Kaschta, J.; Schubert, D.W.; Drummer, D.; Peukert, W.; Schmidt, J. Production of polyamide 11 microparticles for additive manufacturing by liquid-liquid phase separation and precipitation. Chem. Eng. Sci. 2019, 197, 11–25. [Google Scholar] [CrossRef]
- Degli Esposti, M.; Morselli, D.; Fava, F.; Bertin, L.; Cavani, F.; Viaggi, D.; Fabbri, P. The role of biotechnology in the transition from plastics to bioplastics: An opportunity to reconnect global growth with sustainability. FEBS Open Bio 2021, 11, 967–983. [Google Scholar] [CrossRef] [PubMed]
- Winnacker, M.; Rieger, B. Biobased Polyamides: Recent Advances in Basic and Applied Research. Macromol. Rapid Commun. 2016, 37, 1391–1413. [Google Scholar] [CrossRef]
- Verbelen, L.; Dadbakhsh, S.; Van Den Eynde, M.; Kruth, J.P.; Goderis, B.; Van Puyvelde, P. Characterization of polyamide powders for determination of laser sintering processability. Eur. Polym. J. 2016, 75, 163–174. [Google Scholar] [CrossRef]
- Martino, L.; Basilissi, L.; Farina, H.; Ortenzi, M.A.; Zini, E.; Di Silvestro, G.; Scandola, M. Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures. Eur. Polym. J. 2014, 59, 69–77. [Google Scholar] [CrossRef]
- Chatham, C.A.; Long, T.E.; Williams, C.B. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog. Polym. Sci. 2019, 93, 68–95. [Google Scholar] [CrossRef]
- Bahrami, M.; Abenojar, J.; Martínez, M.A. Comparative characterization of hot-pressed polyamide 11 and 12: Mechanical, thermal and durability properties. Polymers 2021, 13, 3553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Mo, Z.; Liu, S.; Zhang, H. Influence of annealing on structure of Nylon 11. Macromolecules 2000, 33, 5999–6005. [Google Scholar] [CrossRef]
- Verkinderen, O.; Baeten, D.; Van Puyvelde, P.; Goderis, B. The crystallization of PA11, PA12, and their random copolymers at increasing supercooling: From eutectic segregation to mesomorphic solid solutions. Polym. Cryst. 2021, 4, e10216. [Google Scholar] [CrossRef]
- Sergi, C.; Vitiello, L.; Dang, P.; Russo, P.; Tirillò, J.; Sarasini, F. Low molecular weight bio-polyamide 11 composites reinforced with flax and intraply flax/basalt hybrid fabrics for eco-friendlier transportation components. Polymers 2022, 14, 5053. [Google Scholar] [CrossRef]
- Hongsriphan, N.; Kaew-Ngam, C.; Saengdet, P.; Kongtara, N. Mechanical enhancement of biodegradable poly(butylene succinate) by biobased polyamide11. Eng. J. 2021, 25, 295–304. [Google Scholar] [CrossRef]
- Schmidt, J.; Sachs, M.; Blümel, C.; Winzer, B.; Toni, F.; Wirth, K.E.; Peukert, W. A novel process chain for the production of spherical SLS polymer powders with good flowability. Procedia Eng. 2015, 102, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Dechet, M.A.; Gómez Bonilla, J.S.; Hesse, N.; Bück, A.; Peukert, W. Characterization of polymer powders for selective laser sintering. In Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2019; pp. 779–789. [Google Scholar] [CrossRef]
- Amado, A.; Schmid, M.; Wegener, K. Flowability of SLS Powders at Elevated Temperature. Available online: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154282/eth-7960-01.pdf (accessed on 6 June 2023). [CrossRef]
- Parteli, E.J.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288, 96–102. [Google Scholar] [CrossRef]
- Brighenti, R.; Cosma, M.P.; Marsavina, L.; Spagnoli, A.; Terzano, M. Laser-based additively manufactured polymers: A review on processes and mechanical models. J. Mater. Sci. 2021, 56, 961–998. [Google Scholar] [CrossRef]
- Lupone, F.; Padovano, E.; Casamento, F.; Badini, C. Process phenomena and material properties in selective laser sintering of polymers: A review. Materials 2022, 15, 183. [Google Scholar] [CrossRef]
- Pandelidi, C.; Lee, K.P.M.; Kajtaz, M. Effects of polyamide-11 powder refresh ratios in multi-jet fusion: A comparison of new and used powder. Addit. Manuf. 2021, 40, 101933. [Google Scholar] [CrossRef]
- Sanders, B.; Cant, E.; Amel, H.; Jenkins, M. The Effect of Physical Aging and Degradation on the Re-Use of Polyamide 12 in Powder Bed Fusion. Polymers 2022, 14, 2682. [Google Scholar] [CrossRef] [PubMed]
- Lumay, G.; Francqui, F.; Detrembleur, C.; Vandewalle, N. Influence of temperature on the packing dynamics of polymer powders. Adv. Powder Technol. 2020, 31, 4428–4435. [Google Scholar] [CrossRef]
- Ruggi, D.; Lupo, M.; Sofia, D.; Barrès, C.; Barletta, D.; Poletto, M. Flow properties of polymeric powders for selective laser sintering. Powder Technol. 2020, 370, 288–297. [Google Scholar] [CrossRef]
- Li, X.F.; Dong, J.H. Study on Curve of Pe-heating Temperature Control in Selective Laser Sintering. In Proceedings of the 2009 International Symposium on Web Information Systems and Applications, Nanchang, China, 22–24 May 2009; pp. 156–158. [Google Scholar]
- Goodridge, R.D.; Tuck, C.J.; Hague, R.J.M. Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 2012, 57, 229–267. [Google Scholar] [CrossRef]
- Schmid, M.; Amado, A.; Wegener, K. Polymer powders for selective laser sintering (SLS). AIP Conf. Proc. 2015, 1664, 160009. [Google Scholar] [CrossRef] [Green Version]
- Amado Becker, A.F. Characterization and Prediction of SLS Processability of Polymer Powders with Respect to Powder Flow and Part Warpage. Ph.D. Thesis, ETH Zürich, Zurich, Switzerland, 2016. [Google Scholar] [CrossRef]
- Papadakis, L.; Chantzis, D.; Salonitis, K. On the energy efficiency of pre-heating methods in SLM/SLS processes. Int. J. Adv. Manuf. Technol. 2018, 95, 1325–1338. [Google Scholar] [CrossRef]
- Han, W.; Kong, L.; Xu, M. Advances in selective laser sintering of polymers. Int. J. Extrem. Manuf. 2022, 4, 042002. [Google Scholar] [CrossRef]
- Tey, W.S.; Cai, C.; Zhou, K. A comprehensive investigation on 3D printing of polyamide 11 and thermoplastic polyurethane via multi jet fusion. Polymers 2021, 13, 2139. [Google Scholar] [CrossRef]
- Strano, G.; Hao, L.; Everson, R.M.; Evans, K.E. Multi-objective optimization of selective laser sintering processes for surface quality and energy saving. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 1673–1682. [Google Scholar] [CrossRef]
- Wegner, A.; Witt, G. Understanding the decisive thermal processes in laser sintering of polyamide 12. AIP Conf. Proc. 2015, 1664, 160004. [Google Scholar] [CrossRef]
- Nelson, J.A.; Rennie, A.E.; Abram, T.N.; Bennett, G.R.; Adiele, A.C.; Tripp, M.; Wood, M.; Galloway, G. Effect of process conditions on temperature distribution in the powder bed during laser sintering of Polyamide-12. J. Therm. Eng. 2015, 1, 159–165. [Google Scholar] [CrossRef]
- Budden, C.L.; Meinert, K.A.; Lalwani, A.R.; Pedersen, D.B. Chamber Heat Calibration by Emissivity Measurements in an Open Source SLS System; American Society for Precision Engineering: Raleigh, NC, USA, 2022; pp. 180–185. [Google Scholar]
- Josupeit, S.; Schmid, H.J. Temperature history within laser sintered part cakes and its influence on process quality. Rapid Prototyp. J. 2016, 22, 788–793. [Google Scholar] [CrossRef]
- Wudy, K.; Drummer, D. Aging effects of polyamide 12 in selective laser sintering: Molecular weight distribution and thermal properties. Addit. Manuf. 2019, 25, 1–9. [Google Scholar] [CrossRef]
- Mwania, F.M.; Maringa, M.; Van Der Walt, J.G. Preliminary testing to determine the best process parameters for polymer laser sintering of a new polypropylene polymeric material. Adv. Polym. Technol. 2021, 2021, 6674890. [Google Scholar] [CrossRef]
- Greiner, S.; Jaksch, A.; Cholewa, S.; Drummer, D. Development of material-adapted processing strategies for laser sintering of polyamide 12. Adv. Ind. Eng. Polym. Res. 2021, 4, 251–263. [Google Scholar] [CrossRef]
- Li, J.; Yuan, S.; Zhu, J.; Li, S.; Zhang, W. Numerical Model and Experimental Validation for Laser Sinterable Semi-Crystalline Polymer: Shrinkage and Warping. Polymers 2020, 12, 1373. [Google Scholar] [CrossRef]
- Frenkel, J. Viscous flow of crystalline bodies. Zhurnal Eksperimentalnoi Teor. Fiz. 1946, 16, 29–38. [Google Scholar]
- Pokluda, O.; Bellehumeur, C.T.; Vlachopoulos, J. Modification of Frenkel’s Model for Sintering. AIChE J. 1997, 43, 3253–3256. [Google Scholar] [CrossRef]
- Bellehumeur, C.T.; Kontopoulou, M.; Vlachopoulos, J. The role of viscoelasticity in polymer sintering. Rheol. Acta 1998, 37, 270–278. [Google Scholar] [CrossRef]
- Scribben, E.; Baird, D.; Wapperom, P. The role of transient rheology in polymeric sintering. Rheol. Acta 2006, 45, 825–839. [Google Scholar] [CrossRef]
- Beal, V.E.; Paggi, R.A.; Salmoria, G.V.; Lago, A. Statistical evaluation of laser energy density effect on mechanical properties of polyamide parts manufactured by selective laser sintering. J. Appl. Polym. Sci. 2009, 113, 2910–2919. [Google Scholar] [CrossRef]
- Wang, R.J.; Wang, L.; Zhao, L.; Liu, Z. Influence of process parameters on part shrinkage in SLS. Int. J. Adv. Manuf. Technol. 2007, 33, 498–504. [Google Scholar] [CrossRef]
- Xin, L.; Boutaous, M.; Xin, S.; Siginer, D.A. Multiphysical modeling of the heating phase in the polymer powder bed fusion process. Addit. Manuf. 2017, 18, 121–135. [Google Scholar] [CrossRef]
- Sabelle, M.; Walczak, M.; Ramos-Grez, J. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder. Opt. Lasers Eng. 2018, 100, 1–8. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, S. To study the effect of SLS parameters for dimensional accuracy. In Advances in Materials Processing; Taylor & Francis Group: Abingdon, UK, 2020; pp. 165–173. [Google Scholar] [CrossRef]
- Senthilkumaran, K.; Pandey, P.M.; Rao, P.V.M. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater. Des. 2009, 30, 2946–2954. [Google Scholar] [CrossRef]
- Wörz, A.; Drummer, D. Understanding hatch-dependent part properties in SLS. In Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium (SFF 2018), Austin, TX, USA, 13–15 August 2018; pp. 1560–1569. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, V.S.; Sachdeva, A. Application of response surface methodology to analyze the effect of selective laser sintering parameters on dimensional accuracy. Prog. Addit. Manuf. 2019, 4, 3–12. [Google Scholar] [CrossRef]
- Chen, K.; Chen, K.; Koh, Z.H.; Le, K.Q.; Teo, H.W.B.; Zheng, H.; Zeng, J.; Zhou, K.; Du, H. Effects of build positions on the thermal history, crystallization, and mechanical properties of polyamide 12 parts printed by Multi Jet Fusion. Virtual Phys. Prototyp. 2022, 17, 631–648. [Google Scholar] [CrossRef]
- Calignano, F.; Giuffrida, F.; Galati, M. Effect of the build orientation on the mechanical performance of polymeric parts produced by multi jet fusion and selective laser sintering. J. Manuf. Process. 2021, 65, 271–282. [Google Scholar] [CrossRef]
- Baba, M.N. Flatwise to upright build orientations under three-point bending test of Nylon 12 (PA12) additively manufactured by SLS. Polymers 2022, 14, 1026. [Google Scholar] [CrossRef]
- Bacchewar, P.B.; Singhal, S.K.; Pandey, P.M. Statistical modelling and optimization of surface roughness in the selective laser sintering process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 35–52. [Google Scholar] [CrossRef]
- ISO 25178-1:2016; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 1: Indication of Surface Texture. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 21920-1:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 1: Indication of Surface Texture. International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 16610-21:2011; Geometrical Product Specifications (GPS)—Filtration—Part 21: Linear Profile Filters: Gaussian Filters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Beitz, S.; Uerlich, R.; Bokelmann, T.; Diener, A.; Vietor, T.; Kwade, A. Influence of powder deposition on powder bed and specimen properties. Materials 2019, 12, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, A.; Brown, R.; Hopkinson, N. The effect of build orientation and surface modification on mechanical properties of high speed sintered parts. Surf. Topogr. Metrol. Prop. 2015, 3, 034005. [Google Scholar] [CrossRef] [Green Version]
Sample | View | Ra | Rq | Sa | Sq | D10 | D50 | D90 | Span |
---|---|---|---|---|---|---|---|---|---|
3UH | Top×5 | 19.078 | 25.075 | 27.853 | 36.508 | ||||
Top×10 | 9.029 | 13.669 | 20.819 | 0.8625 | |||||
Top×20 | 11.707 | 15.063 | 16.179 | 20.142 | 3.549 | 5.545 | 8.752 | 0.9383 | |
Side×5 | 17.334 | 23.487 | 20.053 | 27.045 | |||||
Side×20 | 3.476 | 5.545 | 9.093 | 1.013 | |||||
Btm×5 | 19.542 | 25.869 | 22.273 | 29.880 | |||||
Btm×20 | 3.477 | 5.590 | 9.337 | 1.048 | |||||
4UH | Top×5 | 21.341 | 28.023 | 29.216 | 37.889 | ||||
Top×10 | 8.573 | 13.078 | 19.994 | 0.8733 | |||||
Top×20 | 15.283 | 21.290 | 20.249 | 27.257 | 3.547 | 5.547 | 9.061 | 0.9941 | |
Side×5 | 19.512 | 24.865 | 22.071 | 28.542 | |||||
Side×20 | 3.622 | 5.854 | 9.554 | 1.013 | |||||
Btm×5 | 20.044 | 28.830 | 21.501 | 28.968 | |||||
Btm×20 | 3.478 | 5.546 | 9.284 | 1.047 | |||||
5F | Top×5 | 20.818 | 26.705 | 36.964 | 49.932 | ||||
Top×10 | 8.691 | 13.156 | 19.697 | 0.8366 | |||||
Top×20 | 14.902 | 19.035 | 24.664 | 29.581 | 3.544 | 5.632 | 9.173 | 0.9995 | |
Side×5 | 20.144 | 25.708 | 21.937 | 28.165 | |||||
Side×20 | 3.758 | 6.024 | 10.017 | 1.039 | |||||
Btm×5 | 14.961 | 19.901 | 16.566 | 22.292 | |||||
Btm×20 | 3.478 | 5.545 | 9.121 | 1.018 | |||||
6F | Top×5 | 19.327 | 26.499 | 28.617 | 37.351 | ||||
Top×10 | 8.461 | 12.926 | 19.592 | 0.8612 | |||||
Top×20 | 21.823 | 28.190 | 25.443 | 30.751 | 3.475 | 5.451 | 9.008 | 1.015 | |
Side×5 | 17.779 | 25.098 | 19.367 | 26.588 | |||||
Side×20 | 3.404 | 5.409 | 8.782 | 0.994 | |||||
Btm×5 | 18.444 | 24.061 | 23.018 | 30.552 | |||||
Btm×20 | 3.403 | 5.359 | 8.840 | 1.015 | |||||
9H | Top×5 | 20.463 | 26.691 | 30.407 | 39.064 | ||||
Top×10 | 8.921 | 13.308 | 20.193 | 0.8470 | |||||
Top×20 | 24.148 | 29.908 | 23.647 | 31.373 | 3.549 | 5.681 | 9.418 | 1.033 | |
Side×5 | 19.729 | 26.894 | 19.834 | 27.396 | |||||
Side×20 | 3.477 | 5.454 | 8.982 | 1.010 | |||||
Btm×5 | 22.305 | 29.751 | 23.316 | 31.028 | |||||
Btm×20 | 3.479 | 5.498 | 9.008 | 1.006 | |||||
10H | Top×5 | 18.874 | 25.005 | 30.478 | 39.298 | ||||
Top×10 | 8.576 | 13.155 | 19.795 | 0.8528 | |||||
Top×20 | 14.371 | 17.331 | 16.166 | 21.669 | 3.549 | 5.681 | 9.285 | 1.010 | |
Side×5 | 18.002 | 24.282 | 19.972 | 26.956 | |||||
Side×20 | 3.549 | 5.811 | 9.231 | 0.978 | |||||
Btm×5 | 15.578 | 20.447 | 17.518 | 23.449 | |||||
Btm×20 | 3.404 | 5.453 | 9.038 | 1.033 | |||||
11UF | Top×5 | 18.715 | 27.603 | 28.171 | 36.272 | ||||
Top×10 | 8.577 | 13.153 | 20.437 | 0.9017 | |||||
Top×20 | 14.734 | 18.521 | 19.456 | 23.804 | 3.476 | 5.406 | 8.755 | 0.9764 | |
Side×5 | 15.967 | 22.556 | 18.779 | 25.179 | |||||
Side×20 | 3.407 | 5.450 | 8.837 | 0.996 | |||||
Btm×5 | 19.968 | 26.402 | 22.187 | 29.372 | |||||
Btm×20 | 3.477 | 5.497 | 9.010 | 1.007 | |||||
12H | Top×5 | 20.278 | 26.166 | 34.844 | 44.985 | ||||
Top×10 | 8.806 | 13.456 | 20.290 | 0.8534 | |||||
Top×20 | 21.605 | 27.251 | 23.259 | 31.283 | 3.549 | 5.633 | 9.093 | 0.9841 | |
Side×5 | 17.736 | 23.540 | 20.136 | 26.926 | |||||
Side×20 | 3.479 | 5.546 | 9.008 | 0.997 | |||||
Btm×5 | 20.111 | 26.705 | 24.163 | 31.783 | |||||
Btm×20 | 3.404 | 5.405 | 8.894 | 1.016 | |||||
12UF | Top×5 | 19.912 | 26.831 | 26.279 | 34.215 | ||||
Top×10 | 8.345 | 12.768 | 19.338 | 0.8610 | |||||
Top×20 | 8.0216 | 9.704 | 9.718 | 12.498 | 3.331 | 5.171 | 8.282 | 0.9575 | |
Side×5 | 11.955 | 15.408 | 13.627 | 18.457 | |||||
Side×20 | 3.478 | 5.590 | 8.953 | 0.979 | |||||
Btm×5 | 17.462 | 22.578 | 20.177 | 26.522 | |||||
Btm×20 | 3.405 | 5.497 | 9.066 | 1.030 | |||||
13H | Top×5 | 22.497 | 30.787 | 29.136 | 38.199 | ||||
Top×10 | 8.694 | 13.230 | 20.244 | 0.8730 | |||||
Top×20 | 17.712 | 23.755 | 18.023 | 25.163 | 3.551 | 5.636 | 9.368 | 1.032 | |
Side×5 | 16.959 | 22.842 | 18.380 | 24.868 | |||||
Side×20 | 3.548 | 5.634 | 9.231 | 1.009 | |||||
Btm×5 | 21.515 | 28.080 | 23.592 | 31.119 | |||||
Btm×20 | 3.478 | 5.498 | 9.038 | 1.011 | |||||
14UF | Top×5 | 20.203 | 26.333 | 33.779 | 42.504 | ||||
Top×10 | 8.577 | 13.228 | 20.194 | 0.8783 | |||||
Top×20 | 9.608 | 12.206 | 17.522 | 21.820 | 3.405 | 5.453 | 8.982 | 1.023 | |
Side×5 | 18.317 | 24.619 | 18.820 | 25.527 | |||||
Side×20 | 3.407 | 5.452 | 9.035 | 1.032 | |||||
Btm×5 | 17.713 | 23.387 | 19.190 | 25.945 | |||||
Btm×20 | 3.477 | 5.496 | 9.066 | 1.017 | |||||
15UF | Top×5 | 21.939 | 29.007 | 28.892 | 37.296 | ||||
Top×10 | 8.461 | 13.001 | 19.898 | 0.8797 | |||||
Top×20 | 13.916 | 17.796 | 13.886 | 18.761 | 3.405 | 5.314 | 8.896 | 1.033 | |
Side×5 | 18.732 | 26.215 | 20.868 | 28.482 | |||||
Side×20 | 3.477 | 5.546 | 9.032 | 1.002 | |||||
Btm×5 | 19.389 | 25.203 | 21.477 | 28.471 | |||||
Btm×20 | 3.476 | 5.497 | 9.120 | 1.027 | |||||
19UH | Top×5 | 21.186 | 27.276 | 30.910 | 40.059 | ||||
Top×10 | 8.921 | 13.890 | 21.203 | 0.8842 | |||||
Top×20 | 16.630 | 19.950 | 19.995 | 25.419 | 3.477 | 5.590 | 9.037 | 0.9946 | |
Side×5 | 17.227 | 23.347 | 19.056 | 25.683 | |||||
Side×20 | 3.478 | 5.545 | 8.923 | 0.982 | |||||
Btm×5 | 20.404 | 27.983 | 23.102 | 31.038 | |||||
Btm×20 | 3.478 | 5.497 | 9.173 | 1.036 | |||||
20UH | Top×5 | 19.233 | 25.623 | 29.022 | 37.581 | ||||
Top×10 | 8.922 | 13.670 | 20.916 | 0.8774 | |||||
Top×20 | 10.910 | 14.316 | 15.334 | 18.896 | 3.478 | 5.498 | 8.868 | 0.9804 | |
Side×5 | 16.866 | 22.578 | 19.127 | 25.636 | |||||
Side×20 | 3.479 | 5.591 | 9.149 | 1.014 | |||||
Btm×5 | 19.364 | 26.064 | 22.076 | 29.577 | |||||
Btm×20 | 3.405 | 5.454 | 9.230 | 1.068 | |||||
21F | Top×5 | 19.727 | 25.871 | 31.173 | 40.350 | ||||
Top×10 | 8.577 | 13.153 | 20.045 | 0.8719 | |||||
Top×20 | 12.532 | 16.078 | 15.382 | 20.200 | 3.552 | 5.682 | 9.497 | 1.046 | |
Side×5 | 16.639 | 22.782 | 20.039 | 26.999 | |||||
Side×20 | 3.403 | 5.406 | 9.893 | 1.201 | |||||
Btm×5 | 18.923 | 25.055 | 19.773 | 26.861 | |||||
Btm×20 | 3.550 | 5.681 | 9.230 | 1.000 | |||||
22F | Top×5 | 19.670 | 25.982 | 30.140 | 38.714 | ||||
Top×10 | 8.576 | 13.077 | 19.898 | 0.8658 | |||||
Top×20 | 12.802 | 16.589 | 17.547 | 22.349 | 3.549 | 5.633 | 9.229 | 1.008 | |
Side×5 | 16.993 | 22.846 | 19.396 | 26.319 | |||||
Side×20 | 3.477 | 5.497 | 9.009 | 1.006 | |||||
Btm×5 | 18.216 | 24.294 | 21.213 | 28.122 | |||||
Btm×20 | 3.406 | 5.405 | 8.870 | 1.011 |
Obs | Variable | R-Square | p-Value |
---|---|---|---|
1 | Ra (Top×5) | 0.649811 | 0.4117 |
2 | Rq (Top×5) | 0.789014 | 0.1393 |
3 | Sa (Top×5) | 0.697031 | 0.3104 |
4 | Sq (Top×5) | 0.674443 | 0.3583 |
5 | Ra (Top×20) | 0.838488 | 0.0723 |
6 | Rq (Top×20) | 0.886009 | 0.0291 |
7 | Sa (Top×20) | 0.821514 | 0.0928 |
8 | Sq (Top×20) | 0.864371 | 0.0461 |
9 | D10 (Top×10) | 0.957706 | 0.0018 |
10 | D50 (Top×10) | 0.917584 | 0.0120 |
11 | D90 (Top×10) | 0.910430 | 0.0151 |
12 | Span (Top×10) | 0.784166 | 0.1469 |
13 | D10 (Top×20) | 0.820020 | 0.0948 |
14 | D50 (Top×20) | 0.860219 | 0.0499 |
15 | D90 (Top×20) | 0.786058 | 0.1439 |
16 | Span (Top×20) | 0.719939 | 0.2635 |
17 | Ra (Side×5) | 0.524485 | 0.6746 |
18 | Ra (Side×5) | 0.474366 | 0.7634 |
19 | Rq (Side×5) | 0.626568 | 0.4625 |
20 | Rq (Side×5) | 0.409208 | 0.8569 |
21 | Sa (Side×5) | 0.513080 | 0.6959 |
22 | Sq (Side×5) | 0.508297 | 0.7047 |
23 | D10 (Side×20) | 0.472391 | 0.7666 |
24 | D50 (Side×20) | 0.476349 | 0.7601 |
25 | D90 (Side×20) | 0.414649 | 0.8501 |
26 | Span (Side×20) | 0.524984 | 0.6736 |
27 | Ra (Bottom×5) | 0.815648 | 0.1006 |
28 | Ra (Bottom×5) | 0.824254 | 0.0894 |
29 | Rq (Bottom×5) | 0.885364 | 0.0296 |
30 | Rq (Bottom×5) | 0.833364 | 0.0782 |
31 | Sa (Bottom×5) | 0.584028 | 0.5543 |
32 | Sq (Bottom×5) | 0.626744 | 0.4621 |
33 | D10 (Bottom×20) | 0.741941 | 0.2208 |
34 | D50 (Bottom×20) | 0.558703 | 0.6070 |
35 | D90 (Bottom×20) | 0.743096 | 0.2186 |
36 | Span (Bottom×20) | 0.936378 | 0.0058 |
Factor1 | 0.745209 | 0.2147 | |
Factor2 | 0.360598 | 0.9093 | |
Factor3 | 0.742239 | 0.2202 | |
Factor4 | 0.936331 | 0.0058 | |
Factor5 | 0.510720 | 0.7003 | |
Factor6 | 0.723604 | 0.2562 | |
Factor7 | 0.875494 | 0.0368 | |
Factor8 | 0.617470 | 0.4823 |
Obs | Variable | Factor4 | Factor7 |
---|---|---|---|
1 | Ra (Top×5) | −0.03 | 0.01 |
2 | Rq (Top×5) | −0.24 | −0.09 |
3 | Sa (Top×5) | 0.26 | 0.20 |
4 | Sq (Top×5) | 0.24 | 0.19 |
5 | Ra (Top×20) | −0.6 | 0.24 |
6 | Rq (Top×20) | −0.9 | 0.24 |
7 | Sa (Top×20) | 0.07 | 0.08 |
8 | Sq (Top×20) | 0.05 | 0.18 |
9 | D10 (Top×10) | 0.85 | 0.17 |
10 | D50 (Top×10) | 0.96 | 0.10 |
11 | D90 (Top×10) | 0.90 | −0.0 |
12 | Span (Top×10) | 0.15 | −0.28 |
13 | D10 (Top×20) | 0.19 | 0.69 |
14 | D50 (Top×20) | 0.30 | 0.80 |
15 | D90 (Top×20) | −0.02 | 0.80 |
16 | Span (Top×20) | −0.37 | 0.47 |
17 | Ra (Side×5) | 0.03 | 0.12 |
18 | Ra (Side×5) | 0.16 | 0.12 |
19 | Rq (Side×5) | 0.12 | 0.09 |
20 | Rq (Side×5) | 0.01 | 0.13 |
21 | Sa (Side×5) | 0.12 | 0.16 |
22 | Sq (Side×5) | 0.10 | 0.21 |
23 | D10 (Side×20) | −0.01 | 0.09 |
24 | D50 (Side×20) | −0.02 | 0.03 |
25 | D90 (Side×20) | −0.08 | 0.29 |
26 | Span (Side×20) | −0.09 | 0.32 |
27 | Ra (Bottom×5) | 0.35 | −0.06 |
28 | Ra (Bottom×5) | 0.07 | 0.18 |
29 | Rq (Bottom×5) | 0.40 | −0.05 |
30 | Rq (Bottom×5) | 0.11 | 0.13 |
31 | Sa (Bottom×5) | 0.26 | −0.05 |
32 | Sq (Bottom×5) | 0.30 | −0.05 |
33 | D10 (Bottom×20) | 0.06 | 0.03 |
34 | D50 (Bottom×20) | 0.09 | 0.03 |
35 | D90 (Bottom×20) | 0.39 | −0.21 |
36 | Span (Bottom×20) | 0.46 | −0.033 |
Obs | Variable | Position (pos) | Build Setup (bus) | Full/Hollowed (fuh) |
---|---|---|---|---|
6 | Rq (Top×20) | “D” ≠ “U” | “F” ≠ “H” | |
8 | Sq (Top×20) | “D” ≠ “U” | ||
9 | D10 (Top×10) | “2” ≠ “(8,1,5)” | “F” ≠ “H” | |
“(7,4,3)” ≠ “5” | ||||
10 | D50 (Top×10) | “F” ≠ “H” | ||
11 | D90 (Top×10) | “4” ≠ “5” | “D” ≠ “U” | “F” ≠ “H” |
14 | D50 (Top×20) | “D” ≠ “U” | “F” ≠ “H” | |
29 | Rq (Bottom×5) | “5” ≠ “7” | “F” ≠ “H” | |
36 | Span (Bottom×20) | “3” ≠ “7” | “D” ≠ “U” | “F” ≠ “H” |
Factor4 | “1” ≠ “(4,6)” | “D” ≠ “U” | “F” ≠ “H” | |
Factor7 | “D” ≠ “U” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonello, R.; Conradsen, K.; Pedersen, D.B.; Frisvad, J.R. Surface Roughness and Grain Size Variation When 3D Printing Polyamide 11 Parts Using Selective Laser Sintering. Polymers 2023, 15, 2967. https://doi.org/10.3390/polym15132967
Tonello R, Conradsen K, Pedersen DB, Frisvad JR. Surface Roughness and Grain Size Variation When 3D Printing Polyamide 11 Parts Using Selective Laser Sintering. Polymers. 2023; 15(13):2967. https://doi.org/10.3390/polym15132967
Chicago/Turabian StyleTonello, Riccardo, Knut Conradsen, David Bue Pedersen, and Jeppe Revall Frisvad. 2023. "Surface Roughness and Grain Size Variation When 3D Printing Polyamide 11 Parts Using Selective Laser Sintering" Polymers 15, no. 13: 2967. https://doi.org/10.3390/polym15132967