Impact of Diisocyanates on Morphological and In Vitro Biological Efficacy of Eco-Friendly Castor-Oil-Based Water-Borne Polyurethane Dispersions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Conversion of Castor Oil into Polyol
2.2.1. Synthesis of Epoxidized Castor Oil
2.2.2. Hydroxylation of Epoxidized Castor Oil
2.2.3. Synthesis of Castor-Oil-Based WPUDs
2.3. Characterization
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. Thermal Gravimetric Analysis (TGA)
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Biological Assay
Evaluation of Hemolytic Activity
Biofilm Inhibition Assay
Phase Contrast Microscopic Analysis
3. Results and Discussion
3.1. Identification of Functional Groups and Linkages by FTIR
3.2. Thermal Stability of WPUDs Using Thermogravimetric Analysis
3.3. Morphological Characterization
3.4. Evaluation of In Vitro Biological Efficacy/Biocompatibility WPU Dispersions
3.4.1. Hemolytic Activity of WPU Dispersions
3.4.2. Biofilm Inhibition of Polyurethane Dispersions
3.4.3. Phase Contrast Microscopic Analysis of Polyurethane Dispersions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madbouly, S.A.; Xia, Y.; Kessler, M.R. Sustainable Polyurethane–Lignin Aqueous Dispersions and Thin Films: Rheological Behavior and Thermomechanical Properties. ACS. Appl. Polym. Mater. 2020, 2, 5198–5207. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Mahanwar, P.A.; Gadekar, P.T. Bio-renewable sources for synthesis of eco-friendly polyurethane adhesives. Colloid. Polym. Sci. 2017, 294, 494–503. [Google Scholar] [CrossRef]
- Akram, N.; Zia, K.M.; Saeed, M.; Usman, M.; Khan, W.G.; Bashir, M.A. Investigation of non-adhesive behaviour of water borne polyurethane dispersions. J. Poly. Res. 2019, 26, 45. [Google Scholar] [CrossRef]
- Li, J.; Ning, Z.; Yang, W.; Yang, B.; Zeng, Y. Hydroxyl-Terminated Polybutadiene-Based Polyurethane with Self-Healing and Reprocessing Capabilities. ACS. Omega 2022, 7, 10156–10166. [Google Scholar] [CrossRef]
- Misbah; Bhatti, I.A.; Zia, K.M.; Bhatti, H.N.; Shahid, M. Synthesis, biological efficiency evaluation and application of sodium alginate-based polyurethane dispersions using cycloaliphatic isocyanate, as antibacterial textile coating. J. Ind. Text 2021, 5010, 1625–1642. [Google Scholar]
- Cassales, A.; Ramos, L.A.; Frollini, E. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. Int. J. Biol. Macromol. 2020, 145, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Saalah, S.; Abdullah, L.C.; Aung, M.M.; Salleh, M.Z.; Awang, B.D.R.; Basri, M.; Osman Al Edrus, S.S. Chemical and Thermo-Mechanical Properties of Water borne Polyurethane Dispersion Derived from Jatropha Oil. Polym. J. 2021, 13, 795. [Google Scholar]
- Liang, H.; Liu, L.; Lu, J.; Chen, M.; Zhang, C. Castor oil-based cationic water borne polyurethane dispersions: Storage stability, thermo-physical properties and antibacterial properties. Ind. Crops. Prod. 2018, 117, 169–178. [Google Scholar] [CrossRef]
- Madbouly, S.A.; Xia, Y.; Kessler, M.R. Rheological behavior of environmentally friendly castor oil-based water borne polyurethane dispersions. Macromolecules 2013, 46, 4606–4616. [Google Scholar] [CrossRef]
- Sardon, H.; Irusta, L.; Fernández-Berridi, M.J.; Luna, J.; Lansalot, M.; Bourgeat-Lami, E. Water borne polyurethane dispersions obtained by the acetone process: A study of colloidal features. J. Appl. Polym. Sci. 2020, 11, 2054–2062. [Google Scholar]
- Gaddam, S.K.; Palanisamy, A. Anionic water borne polyurethane dispersions from maleated cotton seed oil polyol carrying ionisable groups. Ind. Crops Prod. 2016, 294, 347–355. [Google Scholar]
- Akram, N.; Zia, K.M.; Saeed, M.; Usman, M.; Khan, W.G. Role of isophorone diisocyanate in the optimization of adhesion tendency of polyurethane pressure sensitive adhesives. J. Appl. Polym. Sci. 2018, 135, 47124. [Google Scholar] [CrossRef]
- Alagi, P.; Choi, Y.J.; Hong, S.C. Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane. Eur. Polym. J. 2016, 78, 46–60. [Google Scholar] [CrossRef]
- Akram, N.; Zia, K.M.; Saeed, M.; Usman, M.; Saleem, S. Impact of macrodiols on the adhesion strength of polyurethane pressure-sensitive adhesives. J. Appl. Polym. Sci. 2018, 135, 46635. [Google Scholar] [CrossRef]
- Lu, Y.; Larock, R.C. Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Prog. Org. Coat. 2010, 69, 31–37. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, C.; Kessler, M.R. Anionic water borne polyurethane dispersion from a bio-based ionic segment. RSC Adv. 2014, 4, 35476–35483. [Google Scholar] [CrossRef]
- Fu, C.; Zheng, Z.; Yang, Z.; Chen, Y.; Shen, L. A fully bio-based water borne polyurethane dispersion from vegetable oils: From synthesis of precursors by thiol-ene reaction to study of final material. Prog. Org. Coat. 2014, 77, 53–60. [Google Scholar] [CrossRef]
- Athawale, V.D.; Nimbalkar, R.V. Polyurethane Dispersions Based on Sardine Fish Oil, Soybean Oil, and Their Interesterification Products. J. Dispers. Sci. Technol. 2011, 32, 1014–1022. [Google Scholar] [CrossRef]
- Cakić, S.M.; Špírková, M.; Ristić, I.S.; Simendić, J.K.B.; Milena, M.; Poręba, R. The water borne polyurethane dispersions based on polycarbonate diol: Effect of ionic content. Mater. Chem. Phys. 2013, 138, 277–285. [Google Scholar] [CrossRef]
- Nurdin, N.S.; Saalah, S.; Lim, A.T.; Francis, A.Y.; Abdullah, L.; SaifulAzry, S. Effect of DMPA Content on Colloidal Stability of Jatropha Oil-based water borne Polyurethane Dispersion. Mater. Sci. Eng. 2020, 1, 12–107. [Google Scholar]
- Mustapa, S.R.; Aung, M.M.; Rayung, M. Physico-Chemical, Thermal, and Electrochemical Analysis of Solid Polymer Electrolyte from Vegetable Oil-Based Polyurethane. Polymers 2021, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Saithai, P.; Lecomte, J.; Dubreucq, E.; Tanrattanakul, V. Effects of different epoxidation methods of soybean oil on the characteristics of acrylated epoxidized soybean oil-co-poly methyl methacrylate copolymer. Express Polym. Lett. 2013, 7, 910–924. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanoa, E.P.; Adhikari, B. Polyurethanes from seed oil-based polyols: A review of synthesis, mechanical and thermal properties. Ind. Crop. Prod. 2019, 142, 111841. [Google Scholar] [CrossRef]
- Wendels, S.; Avérous, L. Biobased polyurethanes for biomedical applications. Bioact Mater. 2021, 6, 1083–1106. [Google Scholar]
- Mumtaz, F.; Zuber, M.; Zia, K.M.; Jamil, T.; Hussain, R. Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol. Korean J. Chem. Eng. 2013, 30, 2259–2263. [Google Scholar] [CrossRef]
- Saleem, A.; Nasir, S.; Rasool, N.; Bokhari, T.H.; Rizwan, K.; Shahid, M.; Zubair, M. In vitro antimicrobial and haemolytic studies of Kalanchoe pinnata and Callistemon viminalis. Int. J. Chem. Biochem. Sci. 2015, 7, 29–34. [Google Scholar]
- Shahid, M.; Munir, H.; Akhter, N.; Akram, N.; Anjum, F.; Iqbal, Y.; Afzal, M. Nanoparticles encapsulation of Phoenix dactylifera (date palm) mucilage for colonic drug delivery. Int. J. Biol. Macromol. 2021, 191, 861–871. [Google Scholar] [CrossRef]
- Shahid, S.A.; Anwar, F.; Shahid, M.; Majeed, N.; Azam, A.; Bashir, M.; Amin, M.; Mahmmod, Z.; Shakir, I. Laser-assisted synthesis of Mn0.50Zn0.50Fe2O4 nanomaterial: Characterization and in-vitro inhibition activity towards Bacillus subtilis biofilm. J. Nanomater 2015, 44, 1–6. [Google Scholar] [CrossRef]
- Anjum, F.; Bukhari, S.A.; Shahid, M.; Bokhari, T.H.; Talpur, M.M.A. Exploration of nutraceutical potential of herbal oil formulated from parasitic plant. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 78–86. [Google Scholar] [CrossRef]
- Qasim, N.; Shahid, M.; Yousaf, F.; Riaz, M.; Anjum, F.; Faryad, M.A.; Shabbir, R. Therapeutic Potential of Selected Varieties of Phoenix dactylifera L. against Microbial Biofilm and Free Radical Damage to DNA. Dose Response 2020, 18, 1559325820962609. [Google Scholar] [CrossRef]
- Riaz, T.; Iqbal, M.W.; Jiang, B.; Chen, J. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int. J. Biol. Macromol. 2021, 186, 472–489. [Google Scholar] [CrossRef] [PubMed]
- Akram, N.; Saeed, M.; Usman, M.; Mansha, A.; Anjum, F.; Zia, K.M.; Mahmood, I.; Mumtaz, N.; Gul Khan, W. Influence of Graphene Oxide Contents on Mechanical Behavior of Polyurethane Composites Fabricated with Different Diisocyanates. Polymers 2021, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M. Stability and properties of water borne polyurethane/clay nanocomposite dispersions. J. Coat. Technol. 2017, 14, 1357–1368. [Google Scholar] [CrossRef]
- Suresh, K.I.; Harikrishnan, M.G. Effect of cardanol diol on the synthesis, characterization, and film properties of aqueous polyurethane dispersions. J. Coat. Technol. 2014, 11, 619–629. [Google Scholar] [CrossRef]
- Reignier, J.; Alcouffe, P.; Méchin, F.; Fenouillot, F. The morphology of rigid polyurethane foam matrix and its evolution with time during foaming—New insight by cryogenic scanning electron microscopy. J. Colloid Interface Sci. 2019, 552, 153–165. [Google Scholar] [CrossRef]
- Allauddin, S.; Somisetti, V.; Narayan, R.; Kothapalli, R.V.S.N. Surface morphology of chlorine and castor oil-based polyurethane–urea coatings. Polym. Bull. 2018, 75, 5269–5285. [Google Scholar] [CrossRef]
Series—I (WPUI) | Molar Composition (mol.%) | Segmentation in PU Dispersions (%) | ||||
Sample Code | Polyol | DMPA | IPDI | BDO | Soft Segment (SS) | Hard Segment (HS) |
WPUI-1 | 1 | 1 | 3.5 | 1.0 | 41.0 | 59.0 |
WPUI-2 | 1 | 1 | 4.0 | 1.5 | 35.0 | 65.0 |
WPUI-3 | 1 | 1 | 5.0 | 2.5 | 32.2 | 67.8 |
WPUI-4 | 1 | 1 | 6.0 | 3.5 | 29.2 | 70.8 |
WPUI-5 | 1 | 1 | 7.0 | 4.5 | 28.0 | 72.0 |
Series—II (WPUH) | Molar Composition (mol.%) | Segmentation in PU dispersions (%) | ||||
Sample Code | Polyol | DMPA | H12MDI | BDO | Soft Segment (SS) | Hard Segment (HS) |
WPUH-1 | 1 | 1 | 3.5 | 1.0 | 47.7 | 52.3 |
WPUH-2 | 1 | 1 | 4.0 | 1.5 | 42.7 | 57.3 |
WPUH-3 | 1 | 1 | 5.0 | 2.5 | 38.5 | 61.5 |
WPUH-4 | 1 | 1 | 6.0 | 1.0 | 35.2 | 64.8 |
WPUH-5 | 1 | 1 | 7.0 | 4.5 | 32.2 | 67.8 |
Sample Code | Ton set °C | Tend set °C | Sample Residue (%) | Sample Code | Ton set °C | Tend set °C | Sample Residue (%) |
---|---|---|---|---|---|---|---|
WPUI-1 | 90 | 580 | 0.54 | WPUH-1 | 80 | 590 | 0.87 |
WPUI-2 | 99 | 580 | 0.29 | WPUH-2 | 110 | 560 | 0.57 |
WPUI-3 | 160 | 570 | 3.24 | WPUH-3 | 112 | 590 | 5.02 |
WPUI-4 | 210 | 600 | 0.08 | WPUH-4 | 119 | 590 | 5.02 |
WPUI-5 | 230 | 580 | 2.97 | WPUH-5 | 220 | 590 | 1.32 |
Sample Code | Hemolytic Activity (%) | Inhibition of Biofilm Formation Against | Sample Code | Hemolytic Activity (%) | Inhibition of Biofilm Formation Against | ||
---|---|---|---|---|---|---|---|
E. coli | S. aureus | E. coli | S. aureus | ||||
WPUI-1 | 2.40 ± 1.00 | 19.81 ± 1.25 | 9.2 ± 1.21 | WPUH-1 | 1.80 ± 0.91 | 3.86 ± 1.50 | 1.4 ± 0.41 |
WPUI-2 | 2.90 ± 1.00 | 22.10 ± 1.30 | 24.6 ± 1.52 | WPUH-2 | 2.40 ± 1.00 | 14.49 ± 1.31 | 18.8 ± 1.30 |
WPUI-3 | 4.70 ± 0.80 | 25.6 ± 1.40 | 25.6 ± 1.31 | WPUH-3 | 3.50 ± 1.00 | 19.32 ± 1.21 | 19.3 ± 1.21 |
WPUI-4 | 5.30 ± 0.91 | 35.27 ± 1.50 | 30.4 ± 1.50 | WPUH-4 | 4.10 ± 0.91 | 20.29 ± 1.50 | 30.4 ± 1.50 |
WPUI-5 | 6.50 ± 0.91 | 40.58 ± 1.8 | 30.9 ± 1.61 | WPUH-5 | 7.50 ± 1.00 | 46.38 ± 1.71 | 46.4 ± 1.80 |
Triton X-100 (Positive Control) | 94.10 ± 0.28 | - | - | Triton X-100 (Positive Control) | 94.10 ± 0.28 | - | - |
PBS (Negative control) | 0.41 ± 0.10 | - | - | PBS (Negative control) | 0.41 ± 0.10 | - | - |
Ciprofloxacin (positive control) | - | 82.65 ± 2.74 | 77.57 ± 2.37 | Ciprofloxacin (positive control) | - | 82.65 ± 2.74 | 77.57 ± 2.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, N.; Usman, M.; Haider, S.; Akhtar, M.S.; Gul, K. Impact of Diisocyanates on Morphological and In Vitro Biological Efficacy of Eco-Friendly Castor-Oil-Based Water-Borne Polyurethane Dispersions. Polymers 2022, 14, 3701. https://doi.org/10.3390/polym14173701
Akram N, Usman M, Haider S, Akhtar MS, Gul K. Impact of Diisocyanates on Morphological and In Vitro Biological Efficacy of Eco-Friendly Castor-Oil-Based Water-Borne Polyurethane Dispersions. Polymers. 2022; 14(17):3701. https://doi.org/10.3390/polym14173701
Chicago/Turabian StyleAkram, Nadia, Muhammad Usman, Sajjad Haider, Muhammad Saeed Akhtar, and Kashmala Gul. 2022. "Impact of Diisocyanates on Morphological and In Vitro Biological Efficacy of Eco-Friendly Castor-Oil-Based Water-Borne Polyurethane Dispersions" Polymers 14, no. 17: 3701. https://doi.org/10.3390/polym14173701