Synthesis, Characterization and Bioactivity Evaluation of a Novel Nano Bagasse Xylan/Andrographolide Grafted and Esterified Derivative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Bagasse Xylan/Andrographolide Grafted and Esterified Derivative
2.2.1. Synthesis of Glycyrrhetinic Acid Chloride
2.2.2. Synthesis of Bagasse Xylan/Andrographolide Esterified Derivative
2.2.3. Synthesis of Bagasse Xylan/Andrographolide Grafted and Esterified Derivative
2.2.4. Synthesis of Bagasse Xylan/Andrographolide Grafted and Esterified Derivative Nanoparticles
2.3. Determination of Degree of Substitution
- Weigh 0.2 g of sample in a 50 mL conical flask;
- Then add 10 mL of distilled water and 2 drops of phenolphthalein with a mass fraction of 5% to the conical flask and shake well;
- Adjust the pH of the mixed solution to 7.0 with 0.5 mol/L of standard NaOH solution;
- Add 2.0 mL of NaOH standard solution at a concentration of 0.5 mol/L, shaking well, and saponify with shaking at 25 °C for 4 h;
- After saponification is complete, titrate the solution with a standard solution of HCl at a concentration of 0.5 mol/L to a pH of 7.0.
2.4. Determination of Grafting Rate and Grafting Efficiency
2.5. Characterization
2.6. Molecular Docking
2.7. Tumor Cell Proliferation Inhibitory Assay
3. Results and Discussion
3.1. Analysis of the Results of the Single-Factor Experiment for DS
3.2. Analysis of the Results of the Single-Factor Test for Grafting Rate (G) and Grafting Efficiency (GE)
3.3. Structure Analysis
3.3.1. FTIR Analysis
3.3.2. XRD Analysis
3.3.3. SEM Analysis
3.3.4. DTG Analysis
3.3.5. H NMR Analysis
3.3.6. Molecular Docking Analysis
3.3.7. Inhibition Analysis of Tumor Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, X.; Xiao, X.; Shen, B.; Jiang, Q.; Wang, H.; Lu, Z.; Wang, F.; Jin, M.; Min, J.; Wang, F. The N 6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res. 2021, 49, 5537–5552. [Google Scholar] [CrossRef] [PubMed]
- Schilsky, R.L.; Nass, S.; Le Beau, M.M.; Benz Jr, E.J. Progress in cancer research, prevention, and care. N. Engl. J. Med. 2020, 383, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Kandra, P.; Kalangi, H.P.J. Current understanding of synergistic interplay of chitosan nanoparticles and anticancer drugs: Merits and challenges. Appl. Microbiol. Biotechnol. 2015, 99, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, C.; Georgiev, M.I.; Bajpai, V.K.; Tundis, R.; Simal-Gandara, J.; Lu, X.; Xiao, J.; Tang, X.; Qiao, X. Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci. Technol. 2021, 111, 360–377. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Huang, G. Preparation and antioxidant activities of important traditional plant polysaccharides. Int. J. Biol. Macromol. 2018, 111, 780–786. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G. Preparation and immunological activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 112, 211–216. [Google Scholar] [CrossRef]
- Melo-Silveira, R.F.; Fidelis, G.P.; Costa, M.S.S.P.; Telles, C.B.S.; Dantas-Santos, N.; De Oliveira Elias, S.; Ribeiro, V.B.; Barth, A.L.; Macedo, A.J.; Leite, E.L. In vitro antioxidant, anticoagulant and antimicrobial activity and in inhibition of cancer cell proliferation by xylan extracted from corn cobs. Int. J. Mol. Sci. 2011, 13, 409–426. [Google Scholar] [CrossRef] [Green Version]
- Hettrich, K.; Drechsler, U.; Loth, F.; Volkert, B. Preparation and characterization of water-soluble xylan ethers. Polymers 2017, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Zhou, H.; Chen, J.; Lyu, G.; Xia, Y.; Lucia, L.A. Ionic Liquid-Mediated Homogeneous Esterification of Cinnamic Anhydride to Xylans. Int. J. Mol. Sci. 2017, 18, 2502. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.B.; Kong, W.Q.; Liu, C.F.; Sun, R.C.; Ren, J.L. Synthesis and characteristic of xylan-grafted-polyacrylamide and application for improving pulp properties. Materials 2017, 10, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Ren, J.; Zhao, C.; Kong, W.; Dai, Q.; Chen, Q.; Liu, C.; Sun, R. Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr. Polym. 2016, 151, 189–197. [Google Scholar] [CrossRef]
- Liu, X.; Lin, Q.; Yan, Y.; Peng, F.; Sun, R.; Ren, J. Hemicellulose from plant biomass in medical and pharmaceutical application: A critical review. Curr. Med. Chem. 2019, 26, 2430–2455. [Google Scholar] [CrossRef] [PubMed]
- El-Din, N.K.B.; Ali, D.A.; Othman, R.; French, S.W.; Ghoneum, M. Chemopreventive role of arabinoxylan rice bran, MGN-3/Biobran, on liver carcinogenesis in rats. Biomed. Pharmacother. 2020, 126, 110064. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Lee, J.; Kim, S.C.; You, S.; Lee, C.W.; Shin, J.; Park, Y.I. Glucuronorhamnoxylan from Capsosiphon fulvescens inhibits the growth of HT-29 human colon cancer cells in vitro and in vivo via induction of apoptotic cell death. Int. J. Biol. Macromol. 2019, 124, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Islam, M.A.; Shaw, S.; Khan, I.N.; Saravi, S.S.S.; Ahmad, S.; Rehman, S.; Gupta, V.K. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett. 2018, 420, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mishra, K.; Ganju, L. Broad-spectrum antiviral properties of andrographolide. Arch. Virol. 2017, 162, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.R.; Zheng, Z.; Liang, R.M.; Li, X.F.; Jiang, Q.Q.; Yue, L.; Wang, Q.; Ding, J.; Liu, Y. Preparation and Cytotoxic Activity of 3, 19-Analogues of 12-Thioether Andrographolide. Chem. Nat. Compd. 2020, 56, 264–269. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, R.M.; Ma, Q.P.; Xu, K.; Liang, X.Y.; Huang, W.; Sutton, R.; Ding, J.; O’Neil, P.M.; Cheng, C.R. Synthesis of thioether andrographolide derivatives and their inhibitory effect against cancer cells. MedChemComm 2017, 8, 1268–1274. [Google Scholar] [CrossRef]
- Tang, S.; Wang, T.; Jiang, M.; Huang, C.; Lai, C.; Fan, Y.; Yong, Q. Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity. Int. J. Biol. Macromol. 2019, 128, 444–451. [Google Scholar] [CrossRef]
- Hosny, M.; Fawzy, M.; Eltaweil, A.S. Green synthesis of bimetallic Ag/ZnO@ Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci. Rep. 2022, 12, 7316. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.U.; Kumar, V.; Priyadarshi, R.; Gopinath, P.; Negi, Y.S. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr. Polym. 2018, 188, 252–259. [Google Scholar] [CrossRef]
- Yuan, H.; Sun, B.; Gao, F.; Lan, M. Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells. Pharm. Biol. 2016, 54, 2629–2635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendis, M.; Leclerc, E.; Simsek, S. Arabinoxylans, gut microbiota and immunity. Carbohydr. Polym. 2016, 139, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Taminiau, B.; Pinheiro, I.; Duysburgh, C.; Jacobs, H.; Pijls, L.; Marzorati, M. Arabinoxylo-oligosaccharides and inulin impact inter-individual variation on microbial metabolism and composition, which immunomodulates human cells. J. Agric. Food Chem. 2018, 66, 1121–1130. [Google Scholar] [CrossRef]
- Na, J.H.; Jeong, G.A.; Park, H.J.; Lee, C.J. Impact of esterification with malic acid on the structural characteristics and in vitro digestibilities of different starches. Int. J. Biol. Macromol. 2021, 174, 540–548. [Google Scholar] [CrossRef]
- Ying, C.; Gongwei, T.; Yuning, L.; Qi, Z.; Jing, L. Ammonium persulfate-initiated polymerization of cationic starch-grafted-cationic polyacrylamide flocculant for the enhanced flocculation of oil sludge suspension. J. Dispers. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Yan, P.; Lai, Q.; Li, M.; Jin, X.; Wie, G.; Chen, W.; Ye, L. New anticancer agents: Design, synthesis, biological activity, and molecular docking of bicyclic phloroglucinol derivatives. ChemistrySelect 2021, 6, 1453–1457. [Google Scholar] [CrossRef]
- Yuriev, E.; Holien, J.; Ramsland, P.A. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. J. Mol. Recognit. 2015, 28, 581–604. [Google Scholar] [CrossRef]
- Zaid, A.N.; Shraim, N.; Radwan, A.; Jaradat, N.; Hirzallah, S.; Issa, I.; Khraim, A. Does gastroplus support similarity and dissimilarity factors of in vitro-in vivo prediction in biowaiver studies? A lower strength amlodipine as a model drug. Drug Res. 2018, 68, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Grela, E.; Kozłowska, J.; Grabowiecka, A. Current methodology of MTT assay in bacteria–A review. Acta Histochem. 2018, 120, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, C.; Selvan, S.T.; Saminathan, M.; Safin, D.A. Crystal structure, quantum computational, molecular docking and in vitro anti-proliferative investigations of 1H-imidazole-2-thione analogues derivative. J. Mol. Struct. 2022, 1250, 131833. [Google Scholar] [CrossRef]
- Kumar, B.; Priyadarshi, R.; Deeba, F.; Kulshreshtha, A.; Kumar, A.; Agrawal, G.; Gopinath, P.; Negi, Y.S. Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Mater. Sci. Eng. C 2020, 107, 110356. [Google Scholar]
- Kumar, A.; Kumar, B.; Kulshreshtha, A.; Negi, Y.S. Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy. Carbohydr. Res. 2021, 499, 108222. [Google Scholar] [CrossRef]
Assignment | Frequency (cm−1) | |||
---|---|---|---|---|
BX | AD | GA-BX/AD | GA-BX/AD-g-IA | |
Hydroxy bond | 3421.21 | 3398.47 | 3365.78 | 3371.54 |
Methyl or methylene group | 2910.41 | 2929.42 | 2900.73 | 2899.13 |
Ester carbonyl | / | 1727.20 | 1722.78 | 1727.43 |
Alkyl group | 1397.85 | / | 1407.74 | 1403.15 |
C—O stretching of phenolic | 1041.72 | 1219.96 | 1163.41 | 1164.08 |
C—H stretching vibration peak | 896.61 | 908.78 | 897.72 | 895.23 |
C—H bond of IA | / | / | / | 808.77 |
PBD Code | Estimated Free Energy of Binding (kcal/mol) | Ki (μM) | Final Intermolecular Energy (kcal/mol) | Final Total Internal Energy (kcal/mol) |
---|---|---|---|---|
2W4Q | −13.65 | 98.08 × 10−6 | −17.83 | −2.82 |
3EAE | −8.94 | 280.61 × 10−3 | −13.11 | −2.49 |
6CFN | −14.68 | 17.46 × 10−6 | −18.85 | −2.75 |
6IIQ | −10.35 | 25.82 × 10−3 | −14.53 | −3.12 |
Sample | Mass Concentration/(μg/mL) | Inhibition Ratio/% | |||
---|---|---|---|---|---|
LO2 | BEL-7407 | MDA-MB-231 | MGC80-3 | ||
BX | 100 | 1.68 ± 0.50 | 1.07 ± 0.71 | 3.16 ± 0.94 | 2.02 ± 0.57 |
50 | 1.15 ± 0.77 | 1.18 ± 0.34 | 2.35 ± 0.72 | 0.24 ± 0.08 | |
20 | −0.81 ± 0.79 | 0.35 ± 0.26 | 1.62 ± 0.47 | −0.15 ± 0.13 | |
10 | −3.34 ± 0.31 | 0.47 ± 0.29 | 0.98 ± 0.33 | −2.99 ± 1.11 | |
1 | −6.98 ± 0.29 | −0.45 ± 0.31 | 0.17 ± 0.12 | −3.27 ± 1.61 | |
BX/AD | 100 | 1.26 ± 0.79 | 2.37 ± 0.73 | 5.62 ± 1.43 | 4.28 ± 1.26 |
50 | 0.83 ± 0.61 | 2.42 ± 0.81 | 3.85 ± 0.61 | 2.35 ± 0.71 | |
20 | −1.75 ± 1.02 | 1.28 ± 0.65 | 2.08 ± 0.29 | 1.73 ± 0.49 | |
10 | −5.21 ± 2.23 | 0.93 ± 0.34 | 1.67 ± 0.50 | 0.68 ± 0.35 | |
1 | −7.49 ± 0.38 | −0.74 ± 0.69 | 0.83 ± 0.26 | −1.23 ± 0.84 | |
GA-BX/AD-g-IA | 100 | 2.84 ± 0.57 | 38.41 ± 5.32 | 26.92 ± 4.25 | 32.69 ± 4.87 |
50 | 2.03 ± 0.75 | 35.76 ± 5.11 | 23.47 ± 3.86 | 29.46 ± 3.91 | |
20 | 1.14 ± 0.64 | 30.49 ± 4.02 | 20.15 ± 2.47 | 26.37 ± 4.18 | |
10 | 0.32 ± 0.20 | 26.74 ± 4.29 | 16.44 ± 2.01 | 22.15 ± 3.36 | |
1 | −1.89 ± 0.68 | 20.16 ± 1.95 | 11.38 ± 1.64 | 17.25 ± 1.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, K.; Li, H.; Zhao, B.; Su, Y.; Zou, Z.; Wang, W. Synthesis, Characterization and Bioactivity Evaluation of a Novel Nano Bagasse Xylan/Andrographolide Grafted and Esterified Derivative. Polymers 2022, 14, 3432. https://doi.org/10.3390/polym14163432
Tian K, Li H, Zhao B, Su Y, Zou Z, Wang W. Synthesis, Characterization and Bioactivity Evaluation of a Novel Nano Bagasse Xylan/Andrographolide Grafted and Esterified Derivative. Polymers. 2022; 14(16):3432. https://doi.org/10.3390/polym14163432
Chicago/Turabian StyleTian, Kexin, Heping Li, Bin Zhao, Yue Su, Zhiming Zou, and Wenli Wang. 2022. "Synthesis, Characterization and Bioactivity Evaluation of a Novel Nano Bagasse Xylan/Andrographolide Grafted and Esterified Derivative" Polymers 14, no. 16: 3432. https://doi.org/10.3390/polym14163432