Photoluminescence Enhancement of Poly(3-methylthiophene) Nanowires upon Length Variable DNA Hybridization
Abstract
:1. Introduction
2. Materials and Methods
- 10-mer DNA sequences:pDNA: NH2-GAG AGA GAG AtDNA: CTC TCT CTC T
- 20-mer DNA sequences:pDNA: NH2-GAG AGA GAG AGA GAG AGA GAtDNA: CTC TCT CTC TCT CTC TCT CT
- 30-mer DNA sequences:pDNA: NH2-GAG AGA GAG AGA GAG AGA GAG AGA GAG AGAtDNA: CTC TCT CTC TCT CTC TCT CTC TCT CTC TCT
3. Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013, 113, 1904–2074. [Google Scholar] [CrossRef] [PubMed]
- Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 2010, 49, 3280–3294. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chiu, D.T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 2013, 52, 3086–3109. [Google Scholar] [CrossRef] [PubMed]
- Pu, K.; Shuhendler, A.J.; Jokerst, J.V.; Mei, J.; Gambhir, S.S.; Bao, Z.; Rao, J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nature 2014, 9, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-Soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–4735. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wei, W.; Qu, X. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215–4236. [Google Scholar] [CrossRef] [PubMed]
- Pu, K.-Y.; Liu, B. Fluorescent conjugated polyelectrolytes for bioimaging. Adv. Funct. Mater. 2011, 21, 3408–3423. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, G.; Peng, X.; Yoon, J. Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem. Soc. Rev. 2012, 41, 4610–4630. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.J.; Kim, J.-M. Fluorogenic polydiacetylene supramolecules: Immobilization, micropatterning, and application to label-free chemosensors. Acc. Chem. Res. 2008, 41, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Lee, S.Y.; Park, S.; Ahn, D.J. Polydiacetylene/Anti-HBs nanobio-complexes for visible and fluorescent detection of hepatitis B surface antigen on nitrocellulose membrane. Chem. Asian J. 2017, 12, 2033–2037. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Kim, H.S.; Jeong, M.-Y.; Lee, Y.B.; Kim, H.-J.; Kim, D.-C.; Kim, J.; Joo, J. Significantly enhanced photoluminescence of doped polymer-metal hybrid nanotubes. Adv. Funct. Mater. 2008, 18, 2526–2534. [Google Scholar] [CrossRef]
- Joo, J.; Park, D.H.; Jeong, M.-Y.; Lee, Y.B.; Kim, H.S.; Choi, W.J.; Park, Q.-H.; Kim, H.-J.; Kim, D.-C.; Kim, J. Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating. Adv. Mater. 2007, 19, 2824–2829. [Google Scholar] [CrossRef]
- Abérem, M.B.; Najari, A.; Ho, H.-A.; Gravel, J.-F.; Nobert, P.; Boudreau, D.; Leclerc, M. Protein detecting arrays based on cationic polythiophene-DNA-aptamer complexes. Adv. Mater. 2006, 18, 2703–2707. [Google Scholar] [CrossRef]
- Doré, K.; Leclerc, M.; Boudreau, D. Investigation of a fluorescence signal amplification mechanism used for the direct molecular detection of nucleic acids. J. Fluoresc. 2006, 16, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; He, F.; An, L.; Wang, S.; Li, Y.; Zhu, D. Fluorescent conjugated polyelectrolytes for biomacromolecule detection. Adv. Mater. 2008, 20, 2959–2964. [Google Scholar] [CrossRef]
- Ho, H.A.; Boissinot, M.; Bergeron, M.G.; Corbeil, G.; Doré, K.; Boudreau, P.D.; Leclerc, M. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew. Chem. Int. Ed. 2002, 41, 1618–1621. [Google Scholar] [CrossRef]
- Ho, H.A.; Najari, A.; Leclerc, M. Optical detection of DNA and proteins with cationic polythiophenes. Acc. Chem. Res. 2008, 41, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, K.P.R.; Inganäs, O. Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nat. Mater. 2003, 2, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Kim, N.; Cui, C.; Hong, Y.K.; Kim, M.S.; Yang, D.-H.; Kim, D.-C.; Lee, H.; Kim, J.; Ahn, D.J.; et al. DNA detection using a light-emitting polymer single nanowire. Chem. Commun. 2011, 47, 7944–7946. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Park, D.H.; Choi, H.; Joo, J.; Ahn, D.J. Protein recognition by phase transition of aptamer-linked polythiophene single nanowire. Small 2016, 12, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.; Lieber, C.M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Zhang, G.; Chua, J.H.; Chee, R.-E.; Wong, E.H.; Agarwal, A.; Buddharaju, K.D.; Singh, N.; Gao, Z.; Balasubramanian, N. DNA sensing by silicon nanowire: Charge layer distance dependence. Nano Lett. 2008, 8, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Kim, M.S.; Joo, J. Hybrid nanostructures using π-conjugated polymers and nanoscale metals: Synthesis, characteristics, and optoelectronic applications. Chem. Soc. Rev. 2010, 39, 2439–2452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, Z.; Singh, V.; Zheng, Z.; Wang, Y.; Li, S.; Song, L.; Zhu, J. Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures. Anal. Chem. 2014, 86, 1430–1436. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Wang, Z.; Gillespie, D.E.; Lausted, C.; Zheng, Z.; Yang, M.; Zhu, J. Plain silver surface plasmon resonance for microarray application. Anal. Chem. 2015, 87, 1446–1469. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, K.P.R.; Andersson, M.R.; Inganäs, O. Conformational transitions of a free amino-acid-functionalized polythiophene induced by different buffer systems. J. Phys. Condens. Matter 2002, 14, 10011–10020. [Google Scholar] [CrossRef]
- Berggrena, M.; Bergmanb, P.; Fagerströmc, J.; Inganäsa, O.; Anderssonde, M.; Wemanb, H.; Granströma, M.; Stafströmc, S.; Wennerströmd, O.; Hjertberge, T. Controling inter-chain and intra-chain excitations of a poly(thiophene) derivative in thin films. Chem. Phys. Lett. 1999, 304, 84–90. [Google Scholar] [CrossRef]
- Brown, P.J.; Thomas, D.S.; Köhler, A.; Wilson, J.S.; Kim, J.-S.; Ramsdale, C.M.; Sirringhaus, H.; Friend, R.H. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Choi, J.; Lee, G.S.; Chen, F.; Cui, C.; Jin, L.Y.; Park, D.H. Photoluminescence Enhancement of Poly(3-methylthiophene) Nanowires upon Length Variable DNA Hybridization. Polymers 2018, 10, 100. https://doi.org/10.3390/polym10010100
Huang J, Choi J, Lee GS, Chen F, Cui C, Jin LY, Park DH. Photoluminescence Enhancement of Poly(3-methylthiophene) Nanowires upon Length Variable DNA Hybridization. Polymers. 2018; 10(1):100. https://doi.org/10.3390/polym10010100
Chicago/Turabian StyleHuang, Jingyuan, Jinho Choi, Gil Sun Lee, Fengchun Chen, Chunzhi Cui, Long Yi Jin, and Dong Hyuk Park. 2018. "Photoluminescence Enhancement of Poly(3-methylthiophene) Nanowires upon Length Variable DNA Hybridization" Polymers 10, no. 1: 100. https://doi.org/10.3390/polym10010100