A CMOS-Compatible Process for ≥3 kV GaN Power HEMTs on 6-inch Sapphire Using In Situ SiN as the Gate Dielectric
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.; et al. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Chen, K.J.; Haberlen, O.; Lidow, A.; lin Tsai, C.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si power technology: Devices and applications. IEEE Trans. Electron. Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Hoo Teo, K.; Zhang, Y.; Chowdhury, N.; Rakheja, S.; Ma, R.; Xie, Q.; Palacios, T. Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J. Appl. Phys. 2021, 130, 160902. [Google Scholar] [CrossRef]
- Islam, N.; Mohamed, M.F.P.; Khan, M.F.A.J.; Falina, S.; Kawarada, H.; Syamsul, M. Reliability, applications and challenges of GaN HEMT technology for modern power devices: A review. Crystals 2022, 12, 1581. [Google Scholar] [CrossRef]
- Flack, T.J.; Pushpakaran, B.N.; Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater. 2016, 45, 2673–2682. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, T.; Li, J.; Huang, A.Q.; Callanan, R.; Husna, F.; Agarwal, A. Characterization, modeling, and application of 10-kV SiC MOSFET. IEEE Trans. Electron. Devices 2008, 55, 1798–1806. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Lee, F.C.; Li, Q. Characterization and Enhancement of High-Voltage Cascode GaN Devices. IEEE Trans. Electron. Devices 2015, 62, 270–277. [Google Scholar] [CrossRef]
- Stoffels, S.; Zhao, M.; Venegas, R.; Kandaswamy, P.; You, S.; Novak, T.; Decoutere, S. The physical mechanism of dispersion caused by AlGaN/GaN buffers on Si and optimization for low dispersion. In Proceedings of the 2015 IEEE International Electron Devices Meeting, Washington, DC, USA, 7–9 December 2015; pp. 35.4.1–35.4.4. [Google Scholar] [CrossRef]
- Ishida, M.; Ueda, T.; Tanaka, T.; Ueda, D. GaN on Si technologies for power switching devices. IEEE Trans. Electron. Devices 2013, 60, 3053–3059. [Google Scholar] [CrossRef]
- Selvaraj, S.L.; Suzue, T.; Egawa, T. Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers. IEEE Electron. Device Lett. 2009, 30, 587–589. [Google Scholar] [CrossRef]
- Able, A.; Wegscheider, W.; Engl, K.; Zweck, J. Growth of crack-free GaN on Si(1 1 1) with graded AlGaN buffer layers. J. Cryst. Growth 2005, 276, 415–418. [Google Scholar] [CrossRef]
- Musolino, M.; Xu, X.; Wang, H.; Rengarajan, V.; Zwieback, I.; Ruland, G.; Messina, A. Paving the way toward the world’s first 200 mm SiC pilot line. Mater. Sci. Semicond. Process. 2021, 135, 106088. [Google Scholar] [CrossRef]
- Hult, B.; Thorsell, M.; Chen, J.T.; Rorsman, N. High Voltage and Low Leakage GaN-on-SiC MISHEMTs on a “Buffer-Free” Heterostructure. IEEE Electron. Device Lett. 2022, 43, 781–784. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, C.; Lu, Y.; Chen, K.J. High-voltage enhancement/Depletion-mode AlGaN/GaN HEMTs on modified SOI substrates. In Proceedings of the 2013 25th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Kanazawa, Japan, 26–30 May 2013; pp. 407–410. [Google Scholar] [CrossRef]
- Li, X.; Geens, K.; Guo, W.; You, S.; Zhao, M.; Fahle, D.; Decoutere, S. Demonstration of GaN integrated half-bridge with on-chip drivers on 200- mm engineered substrates. IEEE Electron. Device Lett. 2019, 40, 1499–1502. [Google Scholar] [CrossRef]
- Integrations, P. InnoSwitch3-CE Family Datasheet. 2023. Available online: https://www.powerint.cn/sites/default/files/documents/innoswitch3-ce_family_datasheet.pdf (accessed on 10 June 2024).
- KYOCERA. Single-Crystal Sapphire Datasheet. 2022. Available online: https://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf (accessed on 11 June 2024).
- Gupta, G.; Kanamura, M.; Swenson, B.; Neufeld, C.; Hosoda, T.; Parikh, P.; Mishra, U. 1200V GaN Switches on Sapphire: A low-cost, high-performance platform for EV and industrial applications. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 35.2.1–35.2.4. [Google Scholar] [CrossRef]
- Cui, J.; Wu, Y.; Yang, J.; Yu, J.; Li, T.; Yang, X.; Wei, J. Method to Study Dynamic Depletion Behaviors in High-Voltage (BV = 1.4 kV) p-GaN Gate HEMT on Sapphire Substrate. In Proceedings of the 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Hong Kong, China, 28 May–1 June 2023; pp. 127–130. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Zhang, J.; Han, Z.; You, S.; Chen, L.; Hao, Y. 1700 V High-performance GaN HEMTs on 6-inch Sapphire with 1.5 μm Thin Buffer. IEEE Electron. Device Lett. 2023, 45, 84–87. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Ji, J.; Cheng, Z.; Wang, J.; Chen, L.; Zhang, J. Demonstration of >8-kV GaN HEMTs with CMOS-compatible manufacturing on 6-in sapphire substrates for medium-voltage applications. IEEE Trans. Electron. Devices 2024, 71, 3989–3993. [Google Scholar] [CrossRef]
- Han, Z.; Li, X.; Ji, J.; Chen, L.; Wang, L.; Cheng, Z.; Zhang, J. p-GaN Gate HEMTs on 6-inch Sapphire by CMOS-Compatible Process: A Promising Game Changer for Power Electronics. IEEE Electron. Device Lett. 2024, 45, 1257–1260. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Chen, L.; Liu, T.; Han, Z.; You, S.; Zhang, J. Report of GaN HEMTs on 8-in Sapphire. IEEE Trans. Electron. Devices 2024, 71, 4429–4432. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Lu, W.; Li, M.; Wang, L.; Zhang, Z.; Sun, W. 1200 V E-mode GaN monolithic integration platform on sapphire with ultra-thin buffer technology. In Proceedings of the 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; p. 9. [Google Scholar] [CrossRef]
- Lu, W.; Li, S.; Liu, S.; Ma, Y.; Zhang, L.; Wei, J.; Zhu, T. Superior Performances of Dynamic On-State Resistance in 1.9 kV GaN-on-Sapphire HEMT. In Proceedings of the 2023 IEEE International Conference on Integrated Circuits, Technologies and Applications, Hefei, China, 27–29 October 2023; pp. 13–14. [Google Scholar] [CrossRef]
- Guo, A.; del Alamo, J.A. Unified mechanism for positive-and negative-bias temperature instability in GaN MOSFETs. IEEE Trans. Electron. Devices 2017, 64, 2142–2147. [Google Scholar] [CrossRef]
- Van Hove, M.; Boulay, S.; Bahl, S.R.; Stoffels, S.; Kang, X.; Wellekens, D.; Decoutere, S. CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon. IEEE Electron Device Lett. 2012, 33, 667–669. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, X.; Ji, J.; You, S.; Chen, L.; Wang, L.; Li, Z.; Hao, Y.; Zhang, J. A CMOS-Compatible Process for ≥3 kV GaN Power HEMTs on 6-inch Sapphire Using In Situ SiN as the Gate Dielectric. Micromachines 2024, 15, 1005. https://doi.org/10.3390/mi15081005
Zhang J, Li X, Ji J, You S, Chen L, Wang L, Li Z, Hao Y, Zhang J. A CMOS-Compatible Process for ≥3 kV GaN Power HEMTs on 6-inch Sapphire Using In Situ SiN as the Gate Dielectric. Micromachines. 2024; 15(8):1005. https://doi.org/10.3390/mi15081005
Chicago/Turabian StyleZhang, Jie, Xiangdong Li, Jian Ji, Shuzhen You, Long Chen, Lezhi Wang, Zilan Li, Yue Hao, and Jincheng Zhang. 2024. "A CMOS-Compatible Process for ≥3 kV GaN Power HEMTs on 6-inch Sapphire Using In Situ SiN as the Gate Dielectric" Micromachines 15, no. 8: 1005. https://doi.org/10.3390/mi15081005