Built-In Packaging for Two-Terminal Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication
2.2. Packaging and Experimental Setup
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Python Code
import pandas as pd
import numpy as np
from scipy.signal import savgol_filter
import tkinter as tk
from tkinter import filedialog
import matplotlib.pyplot as plt
# Create a simple GUI for file selection
root = tk.Tk()
root.withdraw()
# Ask the user to provide an Excel file
file_path = filedialog.askopenfilename()
# Load the data from the Excel file
data = pd.read_excel(file_path)
# Apply the Savitzky-Golay filter to the I data
filtered_I = savgol_filter(data[’I’], 2, 1)
# Calculate the first and second derivatives of the filtered I wrt. V
first_derivative = np.gradient(filtered_I, data[’V’])
second_derivative = np.gradient(first_derivative, data[’V’])
# Calculate the responsivity
responsivity = 2 ∗ second_derivative / first_derivative
# Apply the Savitzky-Golay filter to the responsivity
filtered_responsivity = savgol_filter(responsivity, 499, 3)
# Calculate non-linearity
non_linearity = first_derivative / (filtered_I / data[’V’])
# Apply the Savitzky-Golay filter to the non-linearity
filtered_non_linearity = savgol_filter(non_linearity, 499, 3)
# Calculate asymmetry
asymmetry = np.abs(filtered_I / np.flip(filtered_I))
# Apply the Savitzky-Golay filter to the asymmetry
filtered_asymmetry = savgol_filter(asymmetry, 499, 3)
# Calculate resistance
resistance = np.gradient(data[’V’], filtered_I)
filtered_resistance = savgol_filter(resistance, 51, 1)
filtered_resistance = np.abs(filtered_resistance)
# Add calculated data to dataframe
data[’filtered_I’] = filtered_I
data[’dI/dV’] = first_derivative
data[’d2I/dV2’] = second_derivative
data[’responsivity’] = responsivity
data[’filtered_responsivity’] = filtered_responsivity
data[’non_linearity’] = non_linearity
data[’filtered_non_linearity’] = filtered_non_linearity
data[’asymmetry’] = asymmetry
data[’filtered_asymmetry’] = filtered_asymmetry
data[’Resistance’] = resistance
data[’Filtered_Resistance’] = filtered_resistance
# Define indices for the plots
marker_indices = np.arange(0, len(data[’V’]), len(data[’V’]) // 10)
# Start building the plots
plt.figure(figsize=(20, 15))
# Current plot
plt.subplot(2, 3, 1)
plt.plot(data[’V’], np.log10(np.abs(data[’filtered_I’])), marker=’o’,
markevery=marker_indices)
plt.xlabel(’Voltage(V)’)
plt.ylabel(’Current(I)’)
plt.grid(True)
# Responsivity plot
plt.subplot(2, 3, 2)
plt.plot(data[’V’], data[’filtered_responsivity’], marker=’o’,
markevery=marker_indices)
plt.xlabel(’Voltage(V)’)
plt.ylabel(’Responsivity(A/W)’)
plt.xlim(left=0, right=1)
plt.grid(True)
# Non-linearity plot
plt.subplot(2, 3, 3)
plt.plot(data[’V’], data[’filtered_non_linearity’], marker=’o’,
markevery=marker_indices)
plt.xlabel(’Voltage(V)’)
plt.ylabel(’Non-linearity’)
plt.xlim(left=0, right=1)
plt.grid(True)
# Asymmetry plot
plt.subplot(2, 3, 4)
plt.plot(data[’V’], data[’filtered_asymmetry’], marker=’o’,
markevery=marker_indices)
plt.xlabel(’Voltage(V)’)
plt.ylabel(’Asymmetry’)
plt.xlim(left=0, right=1)
plt.grid(True)
# Resistance plot
plt.subplot(2, 3, 5)
plt.semilogy(data[’V’], data[’Filtered_Resistance’], marker=’o’,
markevery=marker_indices)
plt.xlabel(’Voltage(V)’)
plt.ylabel(’Resistance(Ohm)’)
plt.grid(True) # add grid lines
plt.xlim(left=0) # start x-axis at 0
# Save the figure
plt.savefig(file_path.replace(’.xlsx’, ’-graph.png’))
# Write the filtered data to a new Excel file
data.to_excel(file_path.replace(’.xlsx’, ’-filtered.xlsx’), index=False)
References
- Tucker, J.; Millea, M. Photon detection in nonlinear tunneling devices. Appl. Phys. Lett. 1978, 33, 611–613. [Google Scholar] [CrossRef]
- Alshehri, A.H.; Shahin, A.; Mistry, K.; Ibrahim, K.H.; Yavuz, M.; Musselman, K.P. Metal-Insulator-Insulator-Metal Diodes with Responsivities Greater Than 30 AW- 1 Based on Nitrogen-Doped TiOx and AlOx Insulator Layers. Adv. Electron. Mater. 2021, 7, 2100467. [Google Scholar] [CrossRef]
- Grover, S.; Moddel, G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J. Photovoltaics 2011, 1, 78–83. [Google Scholar] [CrossRef]
- Khan, A.; Jayaswal, G.; Gahaffar, F.; Shamim, A. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectron. Eng. 2017, 181, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Tekin, S.B.; Weerakkody, A.; Sedghi, N.; Hall, S.; Werner, M.; Wrench, J.; Chalker, P.; Mitrovic, I. Single and triple insulator Metal-Insulator-Metal diodes for infrared rectennas. Solid-State Electron. 2021, 185, 108096. [Google Scholar] [CrossRef]
- Bhatt, K.; Tripathi, C. Comparative Analysis of Efficient Diode Design for Terahertz Wireless Power Transmission System; NISCAIR-CSIR: New Delhi, India, 2015. [Google Scholar]
- Liang, Z.; Wen, Y.; Zhang, Z.; Liang, Z.; Xu, Z.; Lin, Y.S. Plasmonic metamaterial using metal-insulator-metal nanogratings for high-sensitive refraction index sensor. Results Phys. 2019, 15, 102602. [Google Scholar] [CrossRef]
- Kazanskiy, N.; Khonina, S.; Butt, M. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 117, 113798. [Google Scholar] [CrossRef]
- Shriwastava, S.; Tripathi, C. Metal–insulator–metal diodes: A potential high frequency rectifier for rectenna application. J. Electron. Mater. 2019, 48, 2635–2652. [Google Scholar] [CrossRef]
- Chen, C.; Wang, G.; Zhang, Z.; Zhang, K. Dual narrow-band absorber based on metal–insulator–metal configuration for refractive index sensing. Opt. Lett. 2018, 43, 3630–3633. [Google Scholar] [CrossRef]
- Gulsaran, A.; Bastug Azer, B.; Kocer, S.; Rahmanian, S.; Saritas, R.; Abdel-Rahman, E.M.; Yavuz, M. Built-In Packaging for Single Terminal Devices. Sensors 2022, 22, 5264. [Google Scholar] [CrossRef]
- Vertyanov, D.V.; Belyakov, I.A.; Timoshenkov, S.P.; Borisova, A.V.; Sidorenko, V.N. Effects of Gold-aluminum Intermetallic Compounds on Chip Wire Bonding Interconnections Reliability. In Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, 27–30 January 2020; pp. 2216–2220. [Google Scholar]
- Ji, B.; Pickert, V.; Cao, W.; Zahawi, B. In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives. IEEE Trans. Power Electron. 2013, 28, 5568–5577. [Google Scholar] [CrossRef] [Green Version]
- Goh, C.S.; Chong, W.L.E.; Lee, T.K.; Breach, C. Corrosion study and intermetallics formation in gold and copper wire bonding in microelectronics packaging. Crystals 2013, 3, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Gan, C.L.; Francis, C.; Chan, B.L.; Hashim, U. Extended reliability of gold and copper ball bonds in microelectronic packaging. Gold Bull. 2013, 46, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.W.; Lee, C.C. A study on intermetallic compound formation in Ag–Al system and evaluation of its mechanical properties by micro-indentation. J. Mater. Sci. Mater. Electron. 2018, 29, 3985–3991. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gao, L.; Ni, T.; Zhou, J.; Li, X.; Li, Y.; Xu, L.; Wang, R.; Zeng, C.; Li, B.; et al. Analysis of Degradation of Electromigration Reliability of Au-Al and OPM Wire Bonded Contacts at 250 °C Using Resistance Monitoring Method. Micromachines 2023, 14, 640. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.; Liu, X.; Li, M.; Zhu, Z.; Qi, Y. Au wire ball welding and its reliability test for high-temperature environment. Micromachines 2022, 13, 1603. [Google Scholar] [CrossRef]
- Bareiß, M.; Ante, F.; Kalblein, D.; Jegert, G.; Jirauschek, C.; Scarpa, G.; Fabel, B.; Nelson, E.M.; Timp, G.; Zschieschang, U.; et al. High-yield transfer printing of metal–insulator–metal nanodiodes. ACS Nano 2012, 6, 2853–2859. [Google Scholar] [CrossRef]
- Taghipour, A.; Heidarzadeh, H. Design and Analysis of Highly Sensitive LSPR-Based Metal–Insulator–Metal Nano-Discs as a Biosensor for Fast Detection of SARS-CoV-2. Photonics 2022, 9, 542. [Google Scholar] [CrossRef]
- Hackett, L.P.; Ameen, A.; Li, W.; Dar, F.K.; Goddard, L.L.; Liu, G.L. Spectrometer-free plasmonic biosensing with metal–insulator–metal nanocup arrays. ACS Sensors 2018, 3, 290–298. [Google Scholar] [CrossRef]
- Alshehri, A.H.; Mistry, K.; Nguyen, V.H.; Ibrahim, K.H.; Muñoz-Rojas, D.; Yavuz, M.; Musselman, K.P. Quantum-Tunneling Metal-Insulator-Metal Diodes Made by Rapid Atmospheric Pressure Chemical Vapor Deposition. Adv. Funct. Mater. 2019, 29, 1805533. [Google Scholar] [CrossRef]
- Periasamy, P.; Berry, J.J.; Dameron, A.A.; Bergeson, J.D.; Ginley, D.S.; O’Hayre, R.P.; Parilla, P.A. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater. 2011, 23, 3080–3085. [Google Scholar] [CrossRef]
- Azer, B.B.; Gulsaran, A.; Pennings, J.R.; Saritas, R.; Kocer, S.; Bennett, J.L.; Abhang, Y.D.; Pope, M.A.; Abdel-Rahman, E.; Yavuz, M. A Review: TiO2 based photoelectrocatalytic chemical oxygen demand sensors and their usage in industrial applications. J. Electroanal. Chem. 2022, 918, 116466. [Google Scholar] [CrossRef]
- Hu, X.; Liu, L.; Liu, S.; Ruan, M.; Chen, Z. Effects of Voids on Thermal Fatigue Reliability of Solder Joints on Inner Rings in Ball Grid Array Packaging by Finite Element Analysis. Micromachines 2023, 14, 588. [Google Scholar] [CrossRef] [PubMed]
- Le, X.L.; Le, X.B.; Hwangbo, Y.; Joo, J.; Choi, G.M.; Eom, Y.S.; Choi, K.S.; Choa, S.H. Mechanical Reliability Assessment of a Flexible Package Fabricated Using Laser-Assisted Bonding. Micromachines 2023, 14, 601. [Google Scholar] [CrossRef]
- Pelz, B.; Moddel, G. Demonstration of distributed capacitance compensation in a metal-insulator-metal infrared rectenna incorporating a traveling-wave diode. J. Appl. Phys. 2019, 125, 234502. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, K.; Kumar, S.; Tripathi, C.C. Highly sensitive Al/Al2O3/Ag MIM diode for energy harvesting applications. AEU-Int. J. Electron. Commun. 2019, 111, 152925. [Google Scholar] [CrossRef]
- Kinzel, E.C.; Brown, R.L.; Ginn, J.C.; Lail, B.A.; Slovick, B.A.; Boreman, G.D. Design of an MOM diode-coupled frequency-selective surface. Microw. Opt. Technol. Lett. 2013, 55, 489–493. [Google Scholar] [CrossRef]
- Bean, J.A.; Tiwari, B.; Bernstein, G.H.; Fay, P.; Porod, W. Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol. Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 11–14. [Google Scholar] [CrossRef]
- Tiwari, B.; Bean, J.A.; Szakmány, G.; Bernstein, G.H.; Fay, P.; Porod, W. Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol. Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 2153–2160. [Google Scholar] [CrossRef]
- Chin, M.L.; Periasamy, P.; O’Regan, T.P.; Amani, M.; Tan, C.; O’Hayre, R.P.; Berry, J.J.; Osgood, R.M.; Parilla, P.A.; Ginley, D.S.; et al. Planar metal–insulator–metal diodes based on the Nb/Nb2O5/X material system. J. Vac. Sci. Technol. 2013, 31. [Google Scholar] [CrossRef]
- Esfandiari, P.; Bernstein, G.; Fay, P.; Porod, W.; Rakos, B.; Zarandy, A.; Berland, B.; Boloni, L.; Boreman, G.; Lail, B.; et al. Tunable antenna-coupled metal-oxide-metal (MOM) uncooled IR detector. In Infrared Technology and Applications XXXI; SPIE: Bellingham, WA, USA, 2005; Volume 5783, pp. 470–482. [Google Scholar]
- Hocini, A.; Melouki, N.; Khedrouche, D. Design and analysis of near infrared high sensitive metal-insulator-metal plasmonic bio-sensor. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 5th International Conference on Advanced Sciences ICAS5, Hurghada, Egypt, 10–12 November 2019; IOP Publishing: Bristol, UK, 2021; Volume 1046, p. 012003. [Google Scholar]
- Shinohara, N. Trends in wireless power transfer: WPT technology for energy harvesting, mllimeter-wave/THz rectennas, MIMO-WPT, and advances in near-field WPT applications. IEEE Microw. Mag. 2020, 22, 46–59. [Google Scholar] [CrossRef]
- Tran, L.G.; Cha, H.K.; Park, W.T. RF power harvesting: A review on designing methodologies and applications. Micro Nano Syst. Lett. 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
Layer | Step 1 | Step 2 | Step 3 | Step 4 |
---|---|---|---|---|
Bottom electrode | PR coating | Lithography | Deposition | Litfoff |
Insulator | Deposition | PR coating | Lithography | Wet etch |
Top electrode | PR coating | Lithography | Deposition | Litfoff |
Structure | Insulator Thickness [nm] | Area [m] | Asym. ≈ V | Max. Nonlin. | Zero-Bias Respon [V] | Max. Respon. [V] | Max. J [A/cm] | Zero-Bias Resistance [] | Application | Interconnection | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Al/AlO/Ag | 0.75 | 1.2 | 9 | 9 | Rectenna | Probing | [28] | ||||
Al/AlO/Pt | 0.1–0.2 | 1 | - | IR-detector | Probing | [29] | |||||
Al/AlO/Pt | 1–2.5 | - | - | - | 4.8 | IR-detector | Probing/Wire bonding | [30] | |||
Al/AlO/Pt | 2.5–3.5 | 1 | - | IR-detector | Probing/Wire bonding | [31] | |||||
Nb/NbO/Pt | 15 | 4.7 | 15 | 16.9 | - | Probing | [32] | ||||
Ni/NiO/Pt | 1–2 | - | 9 | - | 6.5 | ≈ | IR-detector | Probing | [33] | ||
Al/TiO/Pt | 6 | 1.7 | 3.7 | 0.55 | 14.3 | - | Probing | ours | |||
Al/TiO/Pt | 6 | 1.7 | 3.7 | 0.55 | 14.3 | - | Wire bonding | ours | |||
Al/TiO/Pt | 6 | 1.7 | 3.7 | 0.55 | 14.3 | - | Built-in | ours |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulsaran, A.; Bastug Azer, B.; Ozyigit, D.; Saritas, R.; Kocer, S.; Abdel-Rahman, E.; Yavuz, M. Built-In Packaging for Two-Terminal Devices. Micromachines 2023, 14, 1473. https://doi.org/10.3390/mi14071473
Gulsaran A, Bastug Azer B, Ozyigit D, Saritas R, Kocer S, Abdel-Rahman E, Yavuz M. Built-In Packaging for Two-Terminal Devices. Micromachines. 2023; 14(7):1473. https://doi.org/10.3390/mi14071473
Chicago/Turabian StyleGulsaran, Ahmet, Bersu Bastug Azer, Dogu Ozyigit, Resul Saritas, Samed Kocer, Eihab Abdel-Rahman, and Mustafa Yavuz. 2023. "Built-In Packaging for Two-Terminal Devices" Micromachines 14, no. 7: 1473. https://doi.org/10.3390/mi14071473