Broadband Circularly Polarized Conical Corrugated Horn Antenna Using a Dielectric Circular Polarizer
Abstract
:1. Introduction
2. Antenna Design
2.1. Configuration of the CP Horn Antenna
2.2. Dielectric Plate Circular Polarizer Design
2.3. Conical Corrugated Horn Design
2.4. Design Procedure
- Step 1: We selected the appropriate circular waveguide diameter and PCB according to the application frequency.
- Step 2: According to the curve equation of the improved dovetail-shaped dielectric plate, an improved dovetail-shaped dielectric circular polarizer model was established. The dielectric plate was fixed in the circular waveguide through the fixing grooves.
- Step 3: By adjusting the equation parameters and the thickness and length of the dielectric plate, a 90° phase difference was generated between Ex and Ey with equal amplitudes between them. The SIW structure was incorporated to eliminate the effect of the fixing grooves by adjusting the position of the metal via hole.
- Step 4: The waveguide converter was designed and optimized based on the diameter of a circular waveguide and the dimensions of a standard rectangular waveguide.
- Step 5: We designed a conical corrugated horn antenna based on the diameter of the circular waveguide and optimized it.
- Step 6: The three optimized structures were connected sequentially, including a conical corrugated horn antenna, an improved dovetail-shaped dielectric circular polarizer and a four-level metal stepped waveguide converter. The final circularly polarized horn antenna was acquired.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, K. Handbook of Microwave and Optical Components, Microwave Passive and Antenna Components; Wiley: New York, NY, USA, 1997; pp. 626–647. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Yu, H.-Y.; Yu, J.; Yao, Y.; Liu, X.; Chen, X. Wideband Circularly Polarized Horn Antenna Exploiting Open Slotted End Structure. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 267–271. [Google Scholar] [CrossRef]
- Cheng, X.; Yao, Y.; Yu, T.; Chen, Z.; Yu, J.; Chen, X. Analysis and Design of a Low-Cost Circularly Polarized Horn Antenna. IEEE Trans. Antennas Propag. 2018, 66, 7363–7367. [Google Scholar] [CrossRef]
- Lin, C.; Ge, Y.; Bird, T.S.; Liu, K. Circularly Polarized Horns Based on Standard Horns and a Metasurface Polarizer. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 480–484. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Yu, J.; Liu, X.; Yao, Y.; Chen, X. A Wideband Circularly Polarized Horn Antenna with a Tapered Elliptical Waveguide Polarizer. IEEE Trans. Antennas Propag. 2019, 67, 3695–3703. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Volakis, J.L. Hexagonal Waveguide Based Circularly Polarized Horn Antennas for Sub-mm-Wave/Terahertz Band. IEEE Trans. Antennas Propag. 2018, 66, 3366–3374. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Yu, J.; Yao, Y.; Liu, X.; Chen, X. Wideband circularly polarised horn antenna with large aspect ratio for terahertz applications. Electron. Lett. 2020, 56, 11–13. [Google Scholar] [CrossRef]
- Fujii., K.; Kasamatsu, A. Calibration of a Circularly Polarized Horn Antenna in the Frequency Range from 220 to 330 GHz. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016. [Google Scholar]
- Ma, X.; Huang, C.; Pan, W.; Zhao, B.; Cui, J.; Luo, X. A Dual Circularly Polarized Horn Antenna in Ku-Band Based on Chiral Metamaterial. IEEE Trans. Antennas Propag. 2014, 62, 2307–2311. [Google Scholar] [CrossRef]
- Luo, N.; Yu, X.; Mishra, G.; Sharma, S.K. A Millimeter-Wave (V-Band) Dual-Circular-Polarized Horn Antenna Based on an Inbuilt Monogroove Polarizer. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1933–1937. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Y.; Qian, Z.; Cao, W.; Shi, S. Compact Wideband Dual Circularly Polarized Substrate Integrated Waveguide Horn Antenna. IEEE Trans. Antennas Propag. 2016, 64, 3184–3189. [Google Scholar] [CrossRef]
- Addamo, G.; Peverini, O.A.; Tascone, R.; Virone, G.; Cecchini, P.; Mizzoni, R.; Orta, R. Dual use Ku/K band corrugated horn for telecommunication satellite. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Huang, Y.; Geng, J.; Jin, R.; Liang, X.; Bai, X.; Zhu, X.; Zhang, C. A novel compact circularly polarized horn antenna. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 43–44. [Google Scholar] [CrossRef]
- Granet, C. Design of a compact C-band receive-only horn for Earth station antenna G/T/sub A/ performance. IEEE Antennas Wirel. Propag. Lett. 2003, 2, 294–297. [Google Scholar] [CrossRef]
- Chieh, J.-C.S.; Dick, B.; Loui, S.; Rockway, J.D. Development of a Ku-Band Corrugated Conical Horn Using 3-D Print Technology. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 201–204. [Google Scholar] [CrossRef]
- Gonzalez, A.; Kaneko, K.; Kojima, T.; Asayama, S.I.; Uzawa, Y. Terahertz Corrugated Horns (1.25–1.57 THz): Design, Gaussian Modeling, and Measurements. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 42–52. [Google Scholar] [CrossRef]
- Teniente, J.; Gonzalo, R.; Del Rio, C. Low Sidelobe Corrugated Horn Antennas for Radio Telescopes to Maximize G/Ts. IEEE Trans. Antennas Propag. 2011, 59, 1886–1893. [Google Scholar] [CrossRef]
- Manshari, S.; Koziel, S.; Leifsson, L. A Wideband Corrugated Ridged Horn Antenna with Enhanced Gain and Stable Phase Center for X- and Ku-Band Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1031–1035. [Google Scholar] [CrossRef]
- McKay, J.E.; Robertson, D.A.; Speirs, P.J.; Hunter, R.I.; Wylde, R.J.; Smith, G.M. Compact Corrugated Feedhorns with High Gaussian Coupling Efficiency and −60 dB Sidelobes. IEEE Trans. Antennas Propag. 2016, 64, 2518–2522. [Google Scholar] [CrossRef] [Green Version]
- Sekiguchi, S.; Sugimoto, M.; Shu, S.; Sekimoto, Y.; Mitsui, K.; Nishino, T.; Okada, N.; Kubo, K.; Takahashi, T.; Nitta, T. Broadband Corrugated Horn Array with Direct Machined Fabrication. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 36–41. [Google Scholar] [CrossRef]
- Yoneda, N.; Miyazaki, M.; Horie, T.; Satou, H. Mono-grooved circular waveguide polarizers. In Proceedings of the 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278), Seattle, WA, USA, 2–7 June 2002; Volume 2, pp. 821–824. [Google Scholar] [CrossRef]
- Tucholke, U.; Arndt, F.; Wriedt, T. Field Theory Design of Square Waveguide Iris Polarizers. IEEE Trans. Microw. Theory Tech. 1986, 34, 156–160. [Google Scholar] [CrossRef]
- Mahmoud, A.; Kishk, A.A. Ka-band dual mode circularly polarized reflectarray. In Proceedings of the 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Victoria, BC, Canada, 13–16 July 2014; pp. 1–2. [Google Scholar]
- Bornemann, J.; Labay, V. Ridge waveguide polarizer with finite and stepped-thickness septum. IEEE Trans. Microw. Theory Tech. 1995, 43, 1782–1787. [Google Scholar] [CrossRef]
- Albertsen, N.; Skov-Madsen, P. A Compact Septum Polarizer. IEEE Trans. Microw. Theory Tech. 1983, 31, 654–660. [Google Scholar] [CrossRef]
- Franco, M.J. A High-Performance Dual-Mode Feed Horn for Parabolic Reflectors with a Stepped-Septum Polarizer in a Circular Waveguide [Antenna Designer’s Notebook]. IEEE Antennas Propag. Mag. 2011, 53, 142–146. [Google Scholar] [CrossRef]
- Kifflenko, A.A.; Kulik, D.Y.; Rud, L.A.; Tkachenko, V.I.; Herscovici, N. Cad of double-band septum polarizers. In Proceedings of the 34th European Microwave Conference, 2004, Amsterdam, The Netherlands, 12–14 October 2004; pp. 277–280. [Google Scholar]
- Lier, E.; Schaug-Pettersen, T. A novel type of waveguide polarizer with large cross-polar bandwidth. IEEE Trans. Microw. Theory Tech. 1988, 36, 1531–1534. [Google Scholar] [CrossRef]
- Che, W.; Yung, E.K.-N. 90° dielectric polariser in circular waveguide. Electron. Lett. 2000, 36, 794–795. [Google Scholar] [CrossRef]
- Wang, S.-W.; Chien, C.-H.; Wang, C.-L.; Wu, R.-B. A Circular Polarizer Designed with a Dielectric Septum Loading. IEEE Trans. Microw. Theory Tech. 2004, 52, 1719–1723. [Google Scholar] [CrossRef] [Green Version]
- Radanliev, P.; de Roure, D. Review of Algorithms for Artificial Intelligence on Low Memory Devices. IEEE Access 2021, 9, 109986–109993. [Google Scholar] [CrossRef]
- Radanliev, P.; De Roure, D.; Walton, R.; Van Kleek, M.; Montalvo, R.M.; Santos, O.; Maddox, L.; Cannady, S. COVID-19 what have we learned? The rise of social machines and connected devices in pandemic management following the concepts of predictive, preventive and personalized medicine. EPMA J. 2020, 11, 311–332. [Google Scholar] [CrossRef]
Reference | Antenna Type | Impedance Bandwidth | AR Bandwidth | Peak Gain |
---|---|---|---|---|
This work | Improved dovetail-shaped dielectric plate circular polarizer and horn antenna | 52.7% (17.2–27.5 GHz) | 60.9% (17.76–33.32 GHz) * | 17.34 dBic * |
[5] | Metasurface polarizer and horn antenna | 7.4% (28.5–30.7 GHz) | 7.4% (28.5–30.7 GHz) | N.A. */14.2 dBic |
[6] | Tapered elliptical waveguide and horn antenna | 41.8% (170–260 GHz) | 41.8% (170–260 GHz) | 31.9 dBic */31.3 dBic |
[7] | Hexagonal waveguide and horn antenna | 43.4% (90–140 GHz) | 37% (96–140 GHz) | N.A. */18.7 dBic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Tian, J.; Ding, T.; Li, H.; Ye, Q. Broadband Circularly Polarized Conical Corrugated Horn Antenna Using a Dielectric Circular Polarizer. Micromachines 2022, 13, 2138. https://doi.org/10.3390/mi13122138
Xiao J, Tian J, Ding T, Li H, Ye Q. Broadband Circularly Polarized Conical Corrugated Horn Antenna Using a Dielectric Circular Polarizer. Micromachines. 2022; 13(12):2138. https://doi.org/10.3390/mi13122138
Chicago/Turabian StyleXiao, Jun, Jin Tian, Tongyu Ding, Hongmei Li, and Qiubo Ye. 2022. "Broadband Circularly Polarized Conical Corrugated Horn Antenna Using a Dielectric Circular Polarizer" Micromachines 13, no. 12: 2138. https://doi.org/10.3390/mi13122138