Slowly Digestible Carbohydrate for Balanced Energy: In Vitro and In Vivo Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Testing
2.2. In Vivo Rooster Study
2.3. Clinical Study
2.3.1. Subject Screening
2.3.2. Study Design and Subjects
2.3.3. Study Foods
2.3.4. Study Visit Procedures
2.4. Biochemical Analysis
2.5. Data Analysis and Statistics
2.5.1. Sample Size Calculation for Clinical Study and Randomization Method
2.5.2. Data Analysis
2.5.3. Statistical Analysis
3. Results
3.1. In Vitro Testing
3.2. In Vivo Rooster Study
3.3. Clinical Study
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Diabetics Key Facts; World Health Organization: Geneva, Switherland, 2017. [Google Scholar]
- Rowley, W.R.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul. Health Manag. 2017, 20, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Blaak, E.E.; Antoine, J.M.; Benton, D.; Bjorck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of postprandial glycaemia on health and prevention of disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.E.; Elliott, E.J. The use of low-glycaemic index diets in diabetes control. Br. J. Nutr. 2010, 104, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Goff, L.M.; Cowland, D.E.; Hooper, L.; Frost, G.S. Low glycaemic index diets and blood lipids: A systematic review and meta-analysis of randomised controlled trials. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Food and Nutrition Board of the Institute of Medicine; The National Academies. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Magallanes-Cruz, P.A.; Flores-Silva, P.C.; Bello-Perez, L.A. Starch Structure Influences Its Digestibility: A Review. J. Food Sci. 2017, 82, 2016–2023. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. S2), S33–S50. [Google Scholar] [PubMed]
- Zhang, G.; Hamaker, B.R. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ao, Z.; Hamaker, B.R. Slow digestion property of native cereal starches. Biomacromolecules 2006, 7, 3252–3258. [Google Scholar] [CrossRef] [PubMed]
- Englyst, K.N.; Vinoy, S.; Englyst, H.N.; Lang, V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. Nutr. 2003, 89, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Garsetti, M.V.; Vinoy, S.; Lang, V.; Holt, S.; Loyer, S.; Brand-Miller, J.C. The glycemic and insulinemic index of plain sweet biscuits: Relationships to in vitro starch digestibility. J. Am. Coll. Nutr. 2005, 24, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Glycemic Index Foundation. GLYCEMIC INDEX & DIABETES Making Healthy Choices Easy. Available online: http://www.gisymbol.com/cms/wp-content/uploads/2013/10/GIF_HP_Diabetes.pdf (accessed on 19 October 2017).
- Miao, M.; Jiang, B.; Cui, S.W.; Zhang, T.; Jin, Z. Slowly digestible starch—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1642–1657. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. AOAC Official Method 991.43 Total, Soluble, and Insoluble Dietary Fiber in Foods. In Enzymatic-Gravimetric Method, MES-TRIS Buffer, 19th ed.; Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2012. [Google Scholar]
- Parsons, C. Influence of caecectomy on digestibility of amino acids by roosters fed distillers’ dried grains with solubles. J. Agric. Sci. 1985, 104, 469–472. [Google Scholar] [CrossRef]
- Parsons, C.M.; Potter, L.M.; Bliss, B.A. True Metabolizable Energy Corrected to Nitrogen Equilibrium. Poultry Sci. 1982, 61, 2241–2246. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Vinoy, S.; Laville, M.; Feskens, E.J.M. Slow-release carbohydrates: Growing evidence on metabolic responses and public health interest. Summary of the symposium held at the 12th European Nutrition Conference (FENS 2015). Food Nutr. Res. 2016, 60, 31662. [Google Scholar] [CrossRef] [PubMed]
- Marinangeli, C.P.; Harding, S.V. Health claims using the term ‘sustained energy’ are trending but glycaemic response data are being used to support: Is this misleading without context? J. Hum. Nutr. Diet. 2016, 29, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, D.J.; Cuff, D.; Wolever, T.M.; Knowland, D.; Thompson, L.; Cohen, Z.; Prokipchuk, E. Digestibility of carbohydrate foods in an ileostomate: Relationship to dietary fiber, in vitro digestibility, and glycemic response. Am. J. Gastroenterol. 1987, 82, 709–717. [Google Scholar] [PubMed]
- Van der Klis, J.D.; Kwakernaak, C. Proving a concept: An in vitro approach1. J. Appl. Poultry Res. 2014, 23, 301–305. [Google Scholar] [CrossRef]
- Grupp, U.; Siebert, G. Metabolism of hydrogenated palatinose, an equimolar mixture of alpha-d-glucopyranosido-1,6-sorbitol and alpha-d-glucopyranosido-1,6-mannitol. Res. Exp. Med. 1978, 173, 261–278. [Google Scholar] [CrossRef]
- Vinoy, S.; Meynier, A.; Goux, A.; Jourdan-Salloum, N.; Normand, S.; Rabasa-Lhoret, R.; Brack, O.; Nazare, J.A.; Peronnet, F.; Laville, M. The Effect of a Breakfast Rich in Slowly Digestible Starch on Glucose Metabolism: A Statistical Meta-Analysis of Randomized Controlled Trials. Nutrients 2017, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Seal, C.J.; Daly, M.E.; Thomas, L.C.; Bal, W.; Birkett, A.M.; Jeffcoat, R.; Mathers, J.C. Postprandial carbohydrate metabolism in healthy subjects and those with type 2 diabetes fed starches with slow and rapid hydrolysis rates determined in vitro. Br. J. Nutr. 2003, 90, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.H.; Cho, C.E.; Akhavan, T.; Mollard, R.C.; Luhovyy, B.L.; Finocchiaro, E.T. Relation between estimates of cornstarch digestibility by the Englyst in vitro method and glycemic response, subjective appetite, and short-term food intake in young men. Am. J. Clin. Nutr. 2010, 91, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Vanschoonbeek, K.; Lansink, M.; van Laere, K.M.; Senden, J.M.; Verdijk, L.B.; van Loon, L.J. Slowly digestible carbohydrate sources can be used to attenuate the postprandial glycemic response to the ingestion of diabetes-specific enteral formulas. Diabetes Educ. 2009, 35, 631–640. [Google Scholar] [CrossRef] [PubMed]
Nutrient Content (g) | Bar SDS | Bar Control | Pudding SDS | Pudding Control |
---|---|---|---|---|
Serving size | 72 | 70 | 200 | 200 |
Total carbohydratess | 52.9 | 52.8 | 52.6 | 52.4 |
Available carbohydratess | 50.1 | 51.0 | 50.0 | 50.7 |
Sugars | 19.0 | 20.7 | 17.0 | 43.4 |
Dietary fiber | 2.8 | 1.9 | 2.6 | 1.7 |
Protein | 4.8 | 4.4 | 5.8 | 5.7 |
Fat | 4.4 | 4.2 | 5.6 | 5.6 |
Ingredients | Gross Energy 1 | TMEn | Digested (%) |
---|---|---|---|
SDS | 3.986 | 3.756 | 94.2 |
Maltodextrin | 4.008 | 4.014 | 100 |
Mean ± Standard Deviation (SD) | Participants (n = 14) |
---|---|
Age (years) | 38.3 ± 13.3 |
Gender (male/female) | 10/4 |
Weight (kg) | 78.6 ± 10.4 |
Body mass index (kg/m2) | 26.8 ± 2.7 |
Fasting blood glucose (mg/dL) | 82.5 ± 8.8 |
Bars | Puddings | |||||
---|---|---|---|---|---|---|
Ingredient | SDS | Control | p-Value | SDS | Control | p-Value |
Glycemic Index 1,* | 49.9 ± 4.6 | 93.0 ± 8.1 | <0.0001 | 45.9 ± 4.5 | 92.6 ± 9.2 | <0.0001 |
Net iAUC (0–2 h) * | 91.8 ± 16.9 | 183.4 ± 23.1 | 0.0001 | 83.7± 14.8 | 191.1 ± 33.5 | 0.014 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gourineni, V.; Stewart, M.L.; Skorge, R.; Sekula, B.C. Slowly Digestible Carbohydrate for Balanced Energy: In Vitro and In Vivo Evidence. Nutrients 2017, 9, 1230. https://doi.org/10.3390/nu9111230
Gourineni V, Stewart ML, Skorge R, Sekula BC. Slowly Digestible Carbohydrate for Balanced Energy: In Vitro and In Vivo Evidence. Nutrients. 2017; 9(11):1230. https://doi.org/10.3390/nu9111230
Chicago/Turabian StyleGourineni, Vishnupriya, Maria L. Stewart, Rob Skorge, and Bernard C. Sekula. 2017. "Slowly Digestible Carbohydrate for Balanced Energy: In Vitro and In Vivo Evidence" Nutrients 9, no. 11: 1230. https://doi.org/10.3390/nu9111230