A Mediterranean Dietary Pattern Predicts Better Sleep Quality in US Women from the American Heart Association Go Red for Women Strategically Focused Research Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Dietary Assessment
2.3. Sleep Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- St-Onge, M.-P.; Zuraikat, F.M. Reciprocal Roles of Sleep and Diet in Cardiovascular Health: A Review of Recent Evidence and a Potential Mechanism. Curr. Atheroscler. Rep. 2019, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Makarem, N.; St-Onge, M.; Liao, M.; Lloyd-Jones, D.M.; Aggarwal, B. Association of Sleep Characteristics with Cardiovascular Health among Women and Differences by Race/Ethnicity and Menopausal Status: Findings from the American Heart Association Go Red for Women Strategically Focused Research Network. Sleep Health 2019, 5, 501–508. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; Mikic, A.; Pietrolungo, C.E. Effects of Diet on Sleep Quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; Grandner, M.A.; Brown, D.; Conroy, M.B.; Jean-Louis, G.; Coons, M.; Bhatt, D.L. Sleep Duration and Quality: Impact on Lifestyle Behaviors and Cardiometabolic Health: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e367–e386. [Google Scholar] [CrossRef] [Green Version]
- Mossavar-Rahmani, Y.; Weng, J.; Wang, R.; Shaw, P.A.; Jung, M.; Sotres-Alvarez, D.; Castañeda, S.F.; Gallo, L.C.; Gellman, M.D.; Qi, Q.; et al. Actigraphic sleep measures and diet quality in the Hispanic Community Health Study/Study of Latinos Sueño ancillary study. J. Sleep Res. 2017, 26, 739–746. [Google Scholar] [CrossRef]
- Zuraikat, F.M.; Makarem, N.; Liao, M.; St-Onge, M.-P.; Aggarwal, B. Measures of Poor Sleep Quality Are Associated With Higher Energy Intake and Poor Diet Quality in a Diverse Sample of Women From the Go Red for Women Strategically Focused Research Network. J. Am. Heart Assoc. 2020, 9, e014587. [Google Scholar] [CrossRef]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Chaput, J.P. Sleep patterns, diet quality and energy balance. Physiol. Behav. 2014, 134, 86–91. [Google Scholar] [CrossRef]
- Peuhkuri, K.; Sihvola, N.; Korpela, R. Diet promotes sleep duration and quality. Nutr. Res. 2012, 32, 309–319. [Google Scholar] [CrossRef]
- Gangwisch, J.E.; Hale, L.; St-Onge, M.-P.; Choi, L.; Leblanc, E.S.; Malaspina, D.; Opler, M.G.; Shadyab, A.H.; Shikany, J.M.; Snetselaar, L.; et al. High glycemic index and glycemic load diets as risk factors for insomnia: Analyses from the Women’s Health Initiative. Am. J. Clin. Nutr. 2020, 111, 429–439. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health: A Critical Review. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; McCullough, M.L.; Newby, P.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction 1-3. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.E.; Hu, E.A.; Steffen, L.M.; Selvin, E.; Rebholz, C.M. Adherence to a Mediterranean-style eating pattern and risk of diabetes in a U.S. prospective cohort study. Nutr. Diabetes 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.N.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St-Onge, M.-P.; Crawford, A.; Aggarwal, B. Plant-based diets: Reducing cardiovascular risk by improving sleep quality? Curr. Sleep Med. Rep. 2018, 4, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Ferri, R.; Caraci, F.; Cosentino, F.I.I.; Castellano, S.; Galvano, F.; Grosso, G. Adherence to the mediterranean diet is associated with better sleep quality in Italian adults. Nutrients 2019, 11, 976. [Google Scholar] [CrossRef] [Green Version]
- Mamalaki, E.; Anastasiou, C.A.; Ntanasi, E.; Tsapanou, A.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Scarmeas, N.; Yannakoulia, M. Associations between the mediterranean diet and sleep in older adults: Results from the hellenic longitudinal investigation of aging and diet study. Geriatr. Gerontol. Int. 2018, 18, 1543–1548. [Google Scholar] [CrossRef] [Green Version]
- Jaussent, I.; Dauvilliers, Y.; Ancelin, M.-L.; Dartigues, J.-F.; Tavernier, B.; Touchon, J.; Ritchie, K.; Besset, A. Insomnia Symptoms in Older Adults: Associated Factors and Gender Differences. Am. J. Geriatr. Psychiatry 2011, 19, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Campanini, M.Z.; Guallar-Castillón, P.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Mediterranean Diet and Changes in Sleep Duration. Sleep 2017, 40. [Google Scholar] [CrossRef]
- Castro-Diehl, C.; Wood, A.C.; Redline, S.; Reid, M.; Johnson, D.A.; Maras, J.E.; Jacobs, D.R.; Shea, S.; Crawford, A.; St-Onge, M.-P. Mediterranean diet pattern and sleep duration and insomnia symptoms in the Multi-Ethnic Study of Atherosclerosis. Sleep 2018, 41, zsy158. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, J.F.; Miedema, H.M.E.; Joke, T.H.M.; Hofman, A.; Arie, N.K.; Tiemeier, H. Sex Differences in Subjective and Actigraphic Sleep Measures: A Population-Based Study of Elderly Persons. Sleep 2009, 32, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- NHANES Anthropometry Procedures Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_an.pdf (accessed on 6 August 2020).
- Rhee, J.J.; Sampson, L.; Cho, E.; Hughes, M.D.; Hu, F.B.; Willett, W.C. Comparison of Methods to Account for Implausible Reporting of Energy Intake in Epidemiologic Studies. Am. J. Epidemiol. 2015, 181, 225–233. [Google Scholar] [CrossRef]
- NutritionQuest. Available online: https://nutritionquest.com/assessment/list-of-questionnaires-and-screeners/ (accessed on 5 October 2015).
- Block, G.; Hartman, A.M.; Naughton, D. A reduced dietary questionnaire: Development and validation. Epidemiology 1990, 1, 58–64. [Google Scholar] [CrossRef]
- Shah, R.; Makarem, N.; Emin, M.; Liao, M.; Jelic, S.; Aggarwal, B. Mediterranean diet components are linked to greater endothelial function and lower inflammation in a pilot study of ethnically diverse women. Nutr. Res. 2020, 75, 77–84. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Backhaus, J.; Junghanns, K.; Broocks, A.; Riemann, D.; Hohagen, F. Test-retest reliability and validity of the Pittsburgh Sleep Quality Index in primary insomnia. J. Psychosom. Res. 2002, 53, 737–740. [Google Scholar] [CrossRef]
- Ohayon, M.; Wickwire, E.M.; Hirshkowitz, M.; Albert, S.M.; Avidan, A.; Daly, F.J.; Dauvilliers, Y.; Ferri, R.; Fung, C.; Gozal, D.; et al. National Sleep Foundation’s sleep quality recommendations: First report. Sleep Health 2017, 3, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Mancini, J.G.; Filion, K.B.; Atallah, R.; Eisenberg, M.J. Systematic Review of the Mediterranean Diet for Long-Term Weight Loss. Am. J. Med. 2016, 129, 407–415.e4. [Google Scholar] [CrossRef] [Green Version]
- Pengo, M.F.; Won, C.H.; Bourjeily, G. Sleep in Women Across the Life Span. Chest 2018, 154, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, R.; Asakura, K.; Kobayashi, S.; Suga, H.; Sasaki, S. Low intake of vegetables, high intake of confectionary, and unhealthy eating habits are associated with poor sleep quality among middle-aged female Japanese workers. J. Occup. Health 2014, 56, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.-P.; Roberts, A.; Shechter, A.; Choudhury, A.R. Fiber and Saturated Fat Are Associated with Sleep Arousals and Slow Wave Sleep. J. Clin. Sleep Med. 2016, 12, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [Green Version]
- Rolls, B.J.; Ello-Martin, J.A.; Tohill, B.C. What Can Intervention Studies Tell Us about the Relationship between Fruit and Vegetable Consumption and Weight Management? Nutr. Rev. 2004, 62, 1–17. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Lana, A.; Struijk, E.A.; Arias-Fernandez, L.; Graciani, A.; Mesas, A.E.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Habitual meat consumption and changes in sleep duration and quality in older adults. Aging Dis. 2019, 10, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.L.; Dahl, L.; Olson, G.; Thornton, D.; Graff, I.E.; Frøyland, L.; Thayer, J.F.; Pallesen, S. Fish consumption, sleep, daily functioning, and heart rate variability. J. Clin. Sleep Med. 2014, 10, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, M.; Bozkurt, B.; Panjrath, G.; Aggarwal, B.; Ostfeld, R.J.; Barnard, N.D.; Gaggin, H.; Freeman, A.M.; Allen, K.; Madan, S.; et al. Lifestyle Modifications for Preventing and Treating Heart Failure. J. Am. Coll. Cardiol. 2018, 72, 2391–2405. [Google Scholar] [CrossRef]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The Role of Nitric Oxide on Endothelial Function. Curr. Vasc. Pharmacol. 2011, 10, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.; Makarem, N.; Shah, R.; Emin, M.; Wei, Y.; St-Onge, M.-P.; Jelic, S. Effects of Inadequate Sleep on Blood Pressure and Endothelial Inflammation in Women: Findings From the American Heart Association Go Red for Women Strategically Focused Research Network. J. Am. Heart Assoc. 2018, 7, e008590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myhrstad, M.C.W.; Tunsjø, H.; Charnock, C.; Telle-Hansen, V.H. Dietary fiber, gut microbiota, and metabolic regulation—Current status in human randomized trials. Nutrients 2020, 12, 859. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.P.; Easson, C.; Lyle, S.M.; Kapoor, R.; Donnelly, C.P.; Davidson, E.J.; Parikh, E.; Lopez, J.V.; Tartar, J.L. Gut microbiome diversity is associated with sleep physiology in humans. PLoS ONE 2019, 14, e0222394. [Google Scholar] [CrossRef]
- Jackson, C.L.; Redline, S.; Emmons, K.M. Sleep as a Potential Fundamental Contributor to Disparities in Cardiovascular Health. Annu. Rev. Public Health 2015, 36, 417–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, E.; Lerdal, A.; Gay, C.L.; Lee, K.A. How Adult Caregiving Impacts Sleep: A Systematic Review. Curr. Sleep Med. Reports 2016, 2, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Van Egmond, L.; Tan, X.; Sjögren, P.; Cederholm, T.; Benedict, C. Association between healthy dietary patterns and self-reported sleep disturbances in older men: The ULSAM study. Nutrients 2019, 11, 1029. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P.; Campbell, A.; Salazar, I.; Pizinger, T.; Liao, M.; Aggarwal, B. Information on bedtimes and wake times improves the relation between self-reported and objective assessments of sleep in adults. J. Clin. Sleep Med. 2019, 15, 1031. [Google Scholar] [CrossRef]
- Rahe, C.; Czira, M.E.; Teismann, H.; Berger, K. Associations between poor sleep quality and different measures of obesity. Sleep Med. 2015, 16, 1225–1228. [Google Scholar] [CrossRef]
- Lao, X.Q.; Liu, X.; Deng, H.-B.; Chan, T.-C.; Ho, K.F.; Wang, F.; Vermeulen, R.; Tam, T.; Wong, M.C.S.; Tse, L.A.; et al. Sleep Quality, Sleep Duration, and the Risk of Coronary Heart Disease: A Prospective Cohort Study With 60,586 Adults. J. Clin. Sleep Med. 2018, 14, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Gonnissen, H.K.J.; Hursel, R.; Rutters, F.; Martens, E.A.P.; Westerterp-Plantenga, M.S. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men. Br. J. Nutr. 2013, 109, 748–756. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Mean ± SD/n (%) |
---|---|
Demographic and physical | |
Age (years) | 37 ± 15 |
Race | |
White | 247 (57) |
Black/African American | 84 (19) |
Asian | 80 (19) |
Other | 21 (5) |
Race/Ethnicity | |
White/Non-Hispanic | 172 (40) |
Minority/Hispanic | 260 (60) |
Health Insurance | |
Private/Medicare | 276 (64) |
Do not have/Unknown/Medicaid | 156 (36) |
Education | |
>College degree | 139 (32) |
≤College degree | 293 (67) |
Body Mass Index (BMI) (kg/m2) | 25.9 ± 5.5 |
<25 kg/m2 | 232 (54) |
≥25 kg/m2 | 200 (46) |
Dietary Intakes | |
Alternate Mediterranean Diet (aMed) Score | 4.3 ± 1.5 |
Fruits and vegetables a | 3.8 ± 2.3 |
Legumes a | 0.9 ± 1.0 |
Nuts a | 0.7 ± 0.8 |
Dark breads a | 0.3 ± 0.4 |
Red/processed meat a | 1.2 ± 1.3 |
Fish b | 12.6 ± 15.0 |
MUFA to SFA ratio | 1.3 ± 0.4 |
Alcohol c | 4.4 ± 5.6 |
Unsaturated fat c | 23.5 ± 5.3 |
Saturated fat c | 12.7 ± 3.0 |
Plant protein b | 5.9 ± 1.7 |
Animal protein b | 10.0 ± 3.8 |
Fiber b | 11.5 ± 4.5 |
Sleep Characteristic | Baseline | 1-y Follow-Up | p-Value |
---|---|---|---|
Total PSQI score a | 5.5 ± 3.6 | 5.1 ± 3.3 | <0.01 |
Sleep onset latency (min) b | 24.3 ± 29.3 | 21.2 ± 21.0 | 0.02 |
Sleep efficiency (%) b | 88.3 ± 11.4 | 87.5 ± 11.3 | 0.24 |
Sleep disturbance score b | 6.1 ± 4.4 | 5.8 ± 4.2 | 0.05 |
Predictor | Outcome | β (SE) b | p-Value | β (SE) c | p-Value |
---|---|---|---|---|---|
aMed diet score | PSQI total score | −0.30 (0.10) | <0.01 | −0.31 (0.08) | <0.0001 |
Sleep onset latency | −0.61 (0.65) | 0.35 | −0.71 (0.59) | 0.23 | |
Sleep efficiency | 1.20 (0.35) | <0.001 | 1.21 (0.33) | <0.001 | |
Sleep disturbances | −0.30 (0.12) | 0.01 | −0.35 (0.10) | <0.001 | |
Fruits and vegetables | PSQI total score | −0.16 (0.07) | 0.02 | −0.19 (0.05) | <0.001 |
Sleep onset latency | −0.41 (0.44) | 0.36 | −0.31 (0.40) | 0.44 | |
Sleep efficiency | 0.56 (0.24) | 0.02 | 0.52 (0.22) | 0.02 | |
Sleep disturbances | −0.18 (0.08) | 0.03 | −0.15 (0.07) | 0.02 | |
Legumes | PSQI total score | −0.10 (0.16) | 0.55 | −0.24 (0.13) | 0.06 |
Sleep onset latency | −1.13 (1.03) | 0.27 | −1.21 (0.94) | 0.20 | |
Sleep efficiency | 1.36 (0.55) | 0.01 | 1.46 (0.52) | <0.01 | |
Sleep disturbances | 0.17 (0.19) | 0.39 | −0.08 (0.16) | 0.62 | |
Nuts | PSQI total score | 0.01 (0.21) | 0.96 | 0.02 (0.17) | 0.92 |
Sleep onset latency | 0.09 (1.35) | 0.95 | 0.25 (1.23) | 0.84 | |
Sleep efficiency | −0.47 (0.72) | 0.51 | −0.36 (0.68) | 0.60 | |
Sleep disturbances | −0.26 (0.25) | 0.31 | −0.09 (0.20) | 0.65 | |
Dark breads | PSQI total score | −0.68 (0.39) | 0.08 | −0.55 (0.30) | 0.07 |
Sleep onset latency | −0.94 (2.48) | 0.71 | −1.09 (2.26) | 0.63 | |
Sleep efficiency | 2.07 (1.33) | 0.12 | 1.96 (1.26) | 0.12 | |
Sleep disturbances | −0.43 (0.47) | 0.36 | −0.67 (0.38) | 0.08 | |
Fish | PSQI total score | 0.00 (0.01) | 0.99 | −0.004 (0.01) | 0.67 |
Sleep onset latency | 0.02 (0.07) | 0.74 | −0.02 (0.06) | 0.73 | |
Sleep efficiency | −0.01 (0.04) | 0.73 | −0.01 (0.03) | 0.76 | |
Sleep disturbances | −0.01 (0.01) | 0.32 | −0.01 (0.01) | 0.36 | |
Red/processed meat | PSQI total score | −0.02 (0.12) | 0.89 | 0.07 (0.10) | 0.49 |
Sleep onset latency | −0.00 (0.80) | 0.99 | 0.22 (0.73) | 0.76 | |
Sleep efficiency | −0.06 (0.43) | 0.89 | −0.28 (0.41) | 0.49 | |
Sleep disturbances | 0.04 (0.15) | 0.81 | 0.04 (0.12) | 0.74 |
Predictor | Outcome | β (SE) b | p-Value | β (SE) c | p-Value |
---|---|---|---|---|---|
Monounsaturated fat (MUFA) to saturated fat (SFA) ratio | PSQI total score | −0.84 (0.41) | <0.05 | −0.38 (0.33) | 0.25 |
Sleep onset latency | −2.26 (2.69) | 0.40 | −1.10 (2.45) | 0.65 | |
Sleep efficiency | 3.11 (1.43) | 0.03 | 2.40 (1.36) | 0.08 | |
Sleep disturbances | −0.95 (0.50) | 0.06 | −0.56 (0.40) | 0.17 | |
Unsaturated fat | PSQI total score | −0.07 (0.03) | 0.02 | −0.02 (0.02) | 0.35 |
Sleep onset latency | −0.48 (0.19) | 0.01 | −0.43 (0.17) | 0.01 | |
Sleep efficiency | 0.13 (0.10) | 0.22 | 0.09 (0.10) | 0.38 | |
Sleep disturbances | −0.05 (0.04) | 0.19 | −0.01 (0.03) | 0.75 | |
Saturated fat | PSQI total score | −0.004 (0.05) | 0.93 | 0.04 (0.04) | 0.35 |
Sleep onset latency | −0.47 (0.33) | 0.16 | −0.46 (0.30) | 0.14 | |
Sleep efficiency | −0.09 (0.18) | 0.63 | −0.07(0.17) | 0.70 | |
Sleep disturbances | 0.06 (0.06) | 0.33 | 0.10 (0.05) | 0.05 | |
Plant protein | PSQI total score | −0.14 (0.09) | 0.14 | −0.20 (0.07) | <0.01 |
Sleep onset latency | −0.06 (0.59) | 0.92 | −0.15 (0.54) | 0.78 | |
Sleep efficiency | 0.99 (0.31) | <0.01 | 0.93 (0.30) | <0.01 | |
Sleep disturbances | −0.13 (0.11) | 0.26 | −0.18 (0.09) | <0.05 | |
Animal protein | PSQI total score | −0.02 (0.04) | 0.66 | −0.003 (0.03) | 0.92 |
Sleep onset latency | −0.16 (0.26) | 0.54 | −0.09 (0.24) | 0.71 | |
Sleep efficiency | 0.02 (0.14) | 0.87 | −0.01 (0.13) | 0.92 | |
Sleep disturbances | −0.05 (0.05) | 0.28 | −0.03 (0.04) | 0.47 | |
Fiber | PSQI total score | −0.06 (0.04) | 0.08 | −0.09 (0.03) | <0.01 |
Sleep onset latency | −0.20 (0.22) | 0.38 | −0.18 (0.20) | 0.39 | |
Sleep efficiency | 0.33 (0.12) | <0.01 | 0.34 (0.11) | <0.01 | |
Sleep disturbances | −0.07 (0.04) | 0.09 | −0.09 (0.03) | <0.01 | |
Alcohol | PSQI total score | 0.05 (0.03) | 0.06 | 0.04 (0.02) | 0.05 |
Sleep onset latency | 0.25 (0.18) | 0.17 | 0.33 (0.17) | <0.05 | |
Sleep efficiency | −0.16 (0.10) | 0.11 | −0.15 (0.09) | 0.10 | |
Sleep disturbances | 0.05 (0.03) | 0.12 | 0.03 (0.03) | 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuraikat, F.M.; Makarem, N.; St-Onge, M.-P.; Xi, H.; Akkapeddi, A.; Aggarwal, B. A Mediterranean Dietary Pattern Predicts Better Sleep Quality in US Women from the American Heart Association Go Red for Women Strategically Focused Research Network. Nutrients 2020, 12, 2830. https://doi.org/10.3390/nu12092830
Zuraikat FM, Makarem N, St-Onge M-P, Xi H, Akkapeddi A, Aggarwal B. A Mediterranean Dietary Pattern Predicts Better Sleep Quality in US Women from the American Heart Association Go Red for Women Strategically Focused Research Network. Nutrients. 2020; 12(9):2830. https://doi.org/10.3390/nu12092830
Chicago/Turabian StyleZuraikat, Faris M., Nour Makarem, Marie-Pierre St-Onge, Huaqing Xi, Alekha Akkapeddi, and Brooke Aggarwal. 2020. "A Mediterranean Dietary Pattern Predicts Better Sleep Quality in US Women from the American Heart Association Go Red for Women Strategically Focused Research Network" Nutrients 12, no. 9: 2830. https://doi.org/10.3390/nu12092830