Evaluation of ICESat-2 ATL09 Atmospheric Products Using CALIOP and MODIS Space-Based Observations
Abstract
:1. Introduction
2. Methods
2.1. ATL09-v6 ICESat-2 Atmospheric Data
2.2. Comparison Datasets
2.2.1. CALIOP
2.2.2. MODIS
2.3. ICESat-2 and CALIOP Orbital Coincident Points
3. Results
3.1. Clouds
3.2. Aerosols
3.3. Optical Depths
3.4. Coincident ICESat-2/CALIOP Observations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ICESat-2, CALIOP L1, and CALIOP L2 File Names | Correlation Coeff. | Day/Night | Time Offset (seconds) | Coincident Point |
---|---|---|---|---|
ATL09_20190104182603_01120201_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-01-04T18-45-16ZN.hdf | 0.42 | N | 34 | 77.76°N 116.26°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-01-04T18-45-16ZN.hdf | ||||
ATL09_20190109065200_01810201_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-01-09T07-08-41ZN.hdf | 0.79 | N | 121 | 78.76°N 53.07°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-01-09T07-08-41ZN.hdf | ||||
ATL09_20190119230109_03440201_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-01-19T23-20-35ZN.hdf | 0.65 | N | 23 | 80.04°N 161.66°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-01-19T23-20-35ZN.hdf | ||||
ATL09_20190201031917_05300201_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-02-01T03-40-34ZN.hdf | 0.83 | N | 96 | 80.97°N 87.20°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-02-01T03-40-34ZN.hdf | ||||
ATL09_20190205154517_05990201_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-02-05T16-04-13ZN.hdf | 0.51 | N | 62 | 81.26°N 102.99°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-02-05T16-04-13ZN.hdf | ||||
ATL09_20190211175409_06920201_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-02-11T18-14-18ZN.hdf | 0.78 | N | 16 | 81.50°N 140.00°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-02-11T18-14-18ZN.hdf | ||||
ATL09_20190216062009_07610201_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-02-16T06-37-57ZN.hdf | 0.95 | N | 97 | 81.66°N 29.98°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-02-16T06-37-57ZN.hdf | ||||
ATL09_20190527135146_09060301_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-05-27T14-17-55ZN.hdf | 0.96 | N | 134 | 76.67°S 19.12°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-05-27T14-17-55ZN.hdf | ||||
ATL09_20190720203745_03480401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-20T21-20-17ZD.hdf | 0.87 | D | 62 | 28.90°S 110.72°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-20T21-20-17ZD.hdf | ||||
ATL09_20190720221203_03490401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-20T22-12-27ZN.hdf | 0.87 | N | 15 | 30.17°N 57.31°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-20T22-12-27ZN.hdf | ||||
ATL09_20190722102043_03720401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-22T11-06-21ZD.hdf | 0.83 | D | 161 | 28.05°S 42.51°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-22T11-06-21ZD.hdf | ||||
ATL09_20190723205507_03940401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-23T20-49-06ZN.hdf | 0.70 | N | 21 | 19.76°N 75.56°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-23T20-49-06ZN.hdf | ||||
ATL09_20190725055513_04150401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-25T06-26-00ZD.hdf | 0.81 | D | 175 | 11.15°S 108.65°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-25T06-26-00ZD.hdf | ||||
ATL09_20190725103805_04180401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-25T10-35-16ZN.hdf | 0.88 | N | 204 | 18.84°N 131.20°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-25T10-35-16ZN.hdf | ||||
ATL09_20190726211228_04400401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-26T21-04-20ZN.hdf | 0.97 | N | 131 | 11.35°N 69.85°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-26T21-04-20ZN.hdf | ||||
ATL09_20190728092109_04630401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-28T09-12-00ZN.hdf | 0.71 | N | 207 | 7.17°N 112.97°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-28T09-12-00ZN.hdf | ||||
ATL09_20190729151240_04820401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-07-29T16-23-59ZN.hdf | 0.41 | N | 165 | 6.80°S 136.04°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-07-29T16-23-59ZN.hdf | ||||
ATL09_20190801135543_05270401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-08-01T15-00-39ZN.hdf | 0.80 | N | 171 | 18.20°S 154.33°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-08-01T15-00-39ZN.hdf | ||||
ATL09_20190915181541_12170401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-09-15T18-47-27ZN.hdf | 0.55 | N | 101 | 73.52°S 66.73°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-09-15T18-47-27ZN.hdf | ||||
ATL09_20190918183301_12630401_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-09-18T19-02-31ZN.hdf | 0.98 | N | 184 | 74.47°S 60.75°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-09-18T19-02-31ZN.hdf | ||||
ATL09_20190929121633_00400501_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-09-29T12-50-41ZN.hdf | 0.97 | N | 233 | 76.30°S 148.32°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-09-29T12-50-41ZN.hdf | ||||
ATL09_20191005142530_01330501_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-10-05T14-59-15ZN.hdf | 0.83 | N | 288 | 77.31°S 112.46°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-10-05T14-59-15ZN.hdf | ||||
ATL09_20191020172626_03640501_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-10-20T18-38-44ZD.hdf | 0.01 | D | 31 | 79.36°S 58.33°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-10-20T18-38-44ZD.hdf | ||||
ATL09_20191216005530_12240501_006_01.h5 | ||||
CAL_LID_L1-Standard-V4-10.2019-12-16T01-18-44ZN.hdf | 0.45 | N | 112 | 81.82°N 101.01°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2019-12-16T01-18-44ZN.hdf | ||||
ATL09_20200402032743_01010701_006_03.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-02T04-02-09ZN.hdf | 0.84 | N | 438 | 18.89°N 31.93°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-02T04-02-09ZN.hdf | ||||
ATL09_20200405034504_01470701_006_03.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-05T04-17-39ZN.hdf | 0.91 | N | 328 | 4.03°S 40.68°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-05T04-17-39ZN.hdf | ||||
ATL09_20200406141927_01690701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-06T13-54-33ZD.hdf | 0.96 | D | 96 | 28.26°N 11.15°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-06T13-54-33ZD.hdf | ||||
ATL09_20200406155344_01700701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-06T15-33-09ZD.hdf | 0.52 | D | 150 | 20.33°N 33.86°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-06T15-33-09ZD.hdf | ||||
ATL09_20200406172801_01710701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-06T17-11-39ZD.hdf | 0.34 | D | 397 | 12.03°N 56.62°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-06T17-11-39ZD.hdf | ||||
ATL09_20200409174521_02170701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-09T17-27-13ZD.hdf | 0.72 | D | 288 | 32.45°N 65.29°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-09T17-27-13ZD.hdf | ||||
ATL09_20200411041944_02390701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-11T03-56-28ZD.hdf | 0.35 | D | 19 | 45.42°N 133.42°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-11T03-56-28ZD.hdf | ||||
ATL09_20200412162824_02620701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-12T16-56-33ZN.hdf | 0.94 | N | 47 | 48.67°S 117.99°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-12T16-56-33ZN.hdf | ||||
ATL09_20200414043704_02850701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-14T05-04-18ZN.hdf | 0.42 | N | 12 | 53.42°S 65.99°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-14T05-04-18ZN.hdf | ||||
ATL09_20200415182001_03090701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-15T17-58-18ZD.hdf | 0.57 | D | 54 | 55.93°N 81.48°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-15T17-58-18ZD.hdf | ||||
ATL09_20200417062841_03320701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-17T06-06-02ZD.hdf | 0.77 | D | 6 | 59.48°N 94.55°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-17T06-06-02ZD.hdf | ||||
ATL09_20200418183721_03550701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-18T19-06-07ZN.hdf | 0.81 | N | 59 | 61.17°S 79.21°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-18T19-06-07ZN.hdf | ||||
ATL09_20200420064601_03780701_006_02.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-04-20T07-13-52ZN.hdf | 0.93 | N | 3 | 63.68°S 104.61°W |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-04-20T07-13-52ZN.hdf | ||||
ATL09_20200505125531_06110701_006_01.h5 | ||||
CAL_LID_L1-Standard-V4-10.2020-05-05T13-26-40ZN.hdf | 0.88 | N | 137 | 74.13°S 148.39°E |
CAL_LID_L2_05kmMLay-Standard-V4-20.2020-05-05T13-26-40ZN.hdf |
References
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of Tropical Cloudiness by Soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J.; Andreae, M.O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- McGill, M.J.; Yorks, J.E.; Scott, V.S.; Kupchock, A.W.; Selmer, P.A. The Cloud-Aerosol Transport System (CATS): A technology demonstration on the International Space Station. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring XV, San Diego, CA, USA, 12–13 August 2015; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9612, p. 96120A. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Barker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoe, J.; Domenech, C.; Donovan, D.P.; et al. The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bull. Am. Meteorol. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef]
- Donovan, D.P.; van Zadelhoff, G.J.; Wang, P. The EarthCARE lidar cloud and aerosol profile processor (A-PRO): The A-AER, A-EBD, A-TC, and A-ICE products. Atmos. Meas. Tech. 2024, 17, 5301–5340. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Palm, S.P.; Yang, Y.; Herzfeld, U.; Hancock, D.; Hayes, A.; Selmer, P.; Hart, W.; Hlavka, D. ICESat-2 Atmospheric Channel Description, Data Processing and First Results. Earth Space Sci. 2021, 8, e2020EA001470. [Google Scholar] [CrossRef]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry Mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Palm, S.; Yang, Y.; Herzfeld, U.; Hancock, D. ICESat-2 Algorithm Theoretical Basis Document for the Atmosphere, Part I: Level 2 and 3 Data Products; Version 6; National Aeronautics and Space Administration, Goddard Space Flight Center: Glenn Dale, MD, USA, 2022.
- Northam, E.T.; Palm, S.P. Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Project Algorithm Theoretical Basis Document (ATBD) for Atmosphere Gridded Products; Version 5; National Aeronautics and Space Administration, Goddard Space Flight Center: Glenn Dale, MD, USA, 2022.
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef]
- Yorks, J.E.; McGill, M.J.; Palm, S.P.; Hlavka, D.L.; Selmer, P.A.; Nowottnick, E.P.; Vaughan, M.A.; Rodier, S.D.; Hart, W.D. An overview of the CATS level 1 processing algorithms and data products. Geophys. Res. Lett. 2016, 43, 4632–4639. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Ma, X.; Bartlett, K.; Harmon, K.; Yu, F. Comparison of AOD between CALIPSO and MODIS: Significant differences over major dust and biomass burning regions. Atmos. Meas. Tech. 2013, 6, 2391–2401. [Google Scholar] [CrossRef]
- Ryan, R.A.; Vaughan, M.A.; Rodier, S.D.; Tackett, J.L.; Reagan, J.A.; Ferrare, R.A.; Hair, J.W.; Smith, J.A.; Getzewich, B.J. Total column optical depths retrieved from CALIPSO lidar ocean surface backscatter. Atmos. Meas. Tech. 2024, 17, 6517–6545. [Google Scholar] [CrossRef]
- Lee, L.; Zhang, J.; Reid, J.S.; Yorks, J.E. Investigation of CATS aerosol products and application toward global diurnal variation of aerosols. Atmos. Chem. Phys. 2019, 19, 12687–12707. [Google Scholar] [CrossRef]
- Noel, V.; Chepfer, H.; Chiriaco, M.; Yorks, J. The diurnal cycle of cloud profiles over land and ocean between 51°S and 51°N, seen by the CATS spaceborne lidar from the International Space Station. Atmos. Chem. Phys. 2018, 18, 9457–9473. [Google Scholar] [CrossRef]
- Nowottnick, E.P.; Christian, K.E.; Yorks, J.E.; McGill, M.J.; Midzak, N.; Selmer, P.A.; Lu, Z.; Wang, J.; Salinas, S.V. Aerosol Detection from the Cloud–Aerosol Transport System on the International Space Station: Algorithm Overview and Implications for Diurnal Sampling. Atmosphere 2022, 13, 1439. [Google Scholar] [CrossRef]
- Noel, V.; Chepfer, H.; Hoareau, C.; Reverdy, M.; Cesana, G. Effects of solar activity on noise in CALIOP profiles above the South Atlantic Anomaly. Atmos. Meas. Tech. 2014, 7, 1597–1603. [Google Scholar] [CrossRef]
- Crafford, A.; Venzke, E. Global Volcanism Program Report on Raikoke (Russia). Bull. Glob. Volcanism Netw. Smithson. Inst. 2019, 44. [Google Scholar] [CrossRef]
- De Leeuw, J.; Schmidt, A.; Witham, C.S.; Theys, N.; Taylor, I.A.; Grainger, R.G.; Pope, R.J.; Haywood, J.; Osborne, M.; Kristiansen, N.I. The 2019 Raikoke volcanic eruption—Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide. Atmos. Chem. Phys. 2021, 21, 10851–10879. [Google Scholar] [CrossRef]
- Yorks, J.E.; Selmer, P.A.; Kupchock, A.; Nowottnick, E.P.; Christian, K.E.; Rusinek, D.; Dacic, N.; McGill, M.J. Aerosol and Cloud Detection Using Machine Learning Algorithms and Space-Based Lidar Data. Atmosphere 2021, 12, 606. [Google Scholar] [CrossRef]
- Selmer, P.; Yorks, J.E.; Nowottnick, E.P.; Cresanti, A.; Christian, K.E. A Deep Learning Lidar Denoising Approach for Improving Atmospheric Feature Detection. Remote Sens. 2024, 16, 2735. [Google Scholar] [CrossRef]
- Oladipo, B.; Gomes, J.; McGill, M.; Selmer, P. Leveraging Deep Learning as a New Approach to Layer Detection and Cloud–Aerosol Classification Using ICESat-2 Atmospheric Data. Remote Sens. 2024, 16, 2344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christian, K.E.; Palm, S.P.; Yorks, J.E.; Nowottnick, E.P. Evaluation of ICESat-2 ATL09 Atmospheric Products Using CALIOP and MODIS Space-Based Observations. Remote Sens. 2025, 17, 482. https://doi.org/10.3390/rs17030482
Christian KE, Palm SP, Yorks JE, Nowottnick EP. Evaluation of ICESat-2 ATL09 Atmospheric Products Using CALIOP and MODIS Space-Based Observations. Remote Sensing. 2025; 17(3):482. https://doi.org/10.3390/rs17030482
Chicago/Turabian StyleChristian, Kenneth E., Stephen P. Palm, John E. Yorks, and Edward P. Nowottnick. 2025. "Evaluation of ICESat-2 ATL09 Atmospheric Products Using CALIOP and MODIS Space-Based Observations" Remote Sensing 17, no. 3: 482. https://doi.org/10.3390/rs17030482
APA StyleChristian, K. E., Palm, S. P., Yorks, J. E., & Nowottnick, E. P. (2025). Evaluation of ICESat-2 ATL09 Atmospheric Products Using CALIOP and MODIS Space-Based Observations. Remote Sensing, 17(3), 482. https://doi.org/10.3390/rs17030482