Determining Effective Temporal Windows for Rapeseed Detection Using Sentinel-1 Time Series and Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data
2.2.1. Ground Data
2.2.2. SAR Image
2.3. Methodology
- Window 1 (W1): Encompasses the leaf production phase of rapeseed (1 September–1 November), with an S1 time series starting at sowing and ending two months later.
- Window 2 (W2): Encompasses both the leaf production phase of rapeseed and its low-rate growth stage during winter (1 September–1 March), with an S1 time series starting at sowing and ending six months later.
- Window 3 (W3): Spans from the beginning of the rapeseed growth cycle until the onset of rapid spring growth (1 September–1 May), with an S1 time series starting at sowing and ending eight months later.
- Window 4 (W4): Encompasses the entire growth stage of rapeseed (1 September–1 August), with an S1 time series starting at sowing and ending eleven months later, just after the harvest.
- Window 5 (W5): Encompasses the crucial stages of rapeseed growth, covering stem elongation, inflorescence emergence, and fruit development (1 March–1 August). Within this temporal window, the S1 time series begins 1–2 months before flowering and ends shortly after harvest. Notably, there is a significant peak in S1 backscatter observed between May and June within this window.
- Recall represents the proportion of correctly detected rapeseed (TP) compared to the total number of rapeseed fields, including also the non-detected ones (false negatives, NG) [24].
- Precision refers to the ratio of accurately estimated rapeseed (true positives, TP) to the sum of true positives and false positives (instances that were incorrectly predicted as positive) [24].
- F1 score is defined as the harmonic mean of precision and recall measurements [24]. The F1 score is a metric that combines precision and recall into a single value, providing a balance between these two measures. The F1 score ranges from 0 to 1, where 1 indicates perfect precision and recall, and 0 indicates poor performance in either precision or recall. However, we presented it on a scale of percentages between 0 and 100%.
- Kappa is a measure of the agreement between the frequencies of two sets of data collected on separate occasions. It includes both observed and expected agreement and provides a standardized assessment that accounts for chance. It is often used to assess the reliability of ratings, classifications, or observations made by different raters or methods during two different data collection sessions [25].
3. Results
3.1. Sentinel-1 Backscattering Analysis
3.2. Effective Temporal Windows for Rapeseed Mapping
3.2.1. Effective Temporal Windows for Rapeseed Detection in the Same Year
3.2.2. Effective Temporal Windows for Rapeseed Detection Using the Different Years as Training and Test
4. Discussion
4.1. Effective Temporal Windows in the Same Year as Training and Testing
4.2. Effective Temporal Windows with Different Years for Training and Testing
4.3. Sources of Misclassification in Rapeseed Mapping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Liu, W.; Zhang, L. Seamless and Automated Rapeseed Mapping for Large Cloudy Regions Using Time-Series Optical Satellite Imagery. ISPRS J. Photogramm. Remote Sens. 2022, 184, 45–62. [Google Scholar] [CrossRef]
- Meng, S.; Zhong, Y.; Luo, C.; Hu, X.; Wang, X.; Huang, S. Optimal Temporal Window Selection for Winter Wheat and Rapeseed Mapping with Sentinel-2 Images: A Case Study of Zhongxiang in China. Remote Sens. 2020, 12, 226. [Google Scholar] [CrossRef]
- Duren, I.; Voinov, A.; Arodudu, O.; Firrisa, M.T. Where to Produce Rapeseed Biodiesel and Why? Mapping European Rapeseed Energy Efficiency. Renew. Energy 2015, 74, 49–59. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H. Mapping Annual 10 m Rapeseed Extent Using Multisource Data in the Yangtze River Economic Belt of China (2017–2021) on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103198. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, J.; Wang, F. Multi Range Spectral Feature Fitting for Hyperspectral Imagery in Extracting Oilseed Rape Planting Area. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 21–29. [Google Scholar] [CrossRef]
- Tao, J.; Liu, W.; Tan, W.; Kong, X.; Xu, M. Fusing Multi-Source Data to Map Spatio-Temporal Dynamics of Winter Rape on the Jianghan Plain and Dongting Lake Plain, China. J. Integr. Agric. 2019, 18, 2393–2407. [Google Scholar] [CrossRef]
- Maleki, S.; Baghdadi, N.; Dantas, C.F.; Najem, S.; Bazzi, H.; Reluy, N.P.; Ienco, D.; Zribi, M. Artificial Intelligence Algorithms for Rapeseed Fields Mapping Using Sentinel-1 Time Series: Temporal Transfer Scenario and Ground Sampling Constraints. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8884–8899. [Google Scholar] [CrossRef]
- Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Aghighi, H.; Nematollahi, H.; Alimohammadi, A.; Matkan, A.A. Automatic Canola Mapping Using Time Series of Sentinel 2 Images. ISPRS J. Photogramm. Remote Sens. 2019, 156, 63–76. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral Considerations for Modeling Yield of Canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the Temporal Behavior of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation of Sentinel-1 & 2 Time Series for Predicting Wheat and Rapeseed Phenological Stages. ISPRS J. Photogramm. Remote Sens. 2020, 163, 231–256. [Google Scholar] [CrossRef]
- Wang, D.; Fang, S.; Yang, Z.; Wang, L.; Tang, W.; Li, Y.; Tong, C. A Regional Mapping Method for Oilseed Rape Based on HSV Transformation and Spectral Features. ISPRS Int. J. Geoinf. 2018, 7, 224. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Taymans, M.; Lemoine, G.; Ceglar, A.; Yordanov, M.; van der Velde, M. Detecting Flowering Phenology in Oil Seed Rape Parcels with Sentinel-1 and -2 Time Series. Remote Sens. Environ. 2020, 239, 111660. [Google Scholar] [CrossRef]
- Han, S.; Liu, J.; Zhou, G.; Jin, Y.; Zhang, M.; Xu, S. InceptionV3-LSTM: A Deep Learning Net for the Intelligent Prediction of Rapeseed Harvest Time. Agronomy 2022, 12, 3046. [Google Scholar] [CrossRef]
- Waldhoff, G.; Lussem, U.; Bareth, G. Multi-Data Approach for Remote Sensing-Based Regional Crop Rotation Mapping: A Case Study for the Rur Catchment, Germany. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 55–69. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification by Joint Use of High Temporal Resolution SAR And Optical Image Time Series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; Löw, F.; Schorcht, G.; Zeidler, J. Derivation of Temporal Windows for Accurate Crop Discrimination in Heterogeneous Croplands of Uzbekistan Using Multitemporal RapidEye Images. Comput. Electron. Agric. 2014, 103, 63–74. [Google Scholar] [CrossRef]
- Vaudour, E.; Noirot-Cosson, P.E.; Membrive, O. Early-Season Mapping of Crops and Cultural Operations Using Very High Spatial Resolution Pléiades Images. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 128–141. [Google Scholar] [CrossRef]
- Sujud, L.; Jaafar, H.; Haj Hassan, M.A.; Zurayk, R. Cannabis Detection from Optical and RADAR Data Fusion: A Comparative Analysis of the SMILE Machine Learning Algorithms in Google Earth Engine. Remote Sens. Appl. 2021, 24, 100639. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- USDA. Oilseeds: World Markets and Trade. Feb 2023. Foreign Agricultural Service/USDA/Global Market Analysis, Washington, DC, USA, 2023. Available online: https://fas.usda.gov/data/oilseeds-world-markets-and-trade (accessed on 24 September 2023).
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest Classification of Mediterranean Land Cover Using Multi-Seasonal Imagery and Multi-Seasonal Texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F. InceptionTime: Finding AlexNet for Time Series Classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [Google Scholar] [CrossRef]
- Fränti, P.; Mariescu-Istodor, R. Soft Precision and Recall. Pattern Recognit. Lett. 2023, 167, 115–121. [Google Scholar] [CrossRef]
- Xia, Y. Correlation and Association Analyses in Microbiome Study Integrating Multiomics in Health and Disease. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 309–491. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Informative Than Cohen’s Kappa and Brier Score in Binary Classification Assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F.; Marais-Sicre, C. Monitoring Wheat and Rapeseed by Using Synchronous Optical and Radar Satellite Data—From Temporal Signatures to Crop Parameters Estimation. Adv. Remote Sens. 2013, 02, 162–180. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Angelliaume, S. Analysis of Sentinel-1 Radiometric Stability and Quality for Land Surface Applications. Remote Sens. 2016, 8, 406. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Assessment of the Effectiveness of Support Vector Machines for Hyperspectral Data. Future Gener. Comput. Syst. 2004, 20, 1215–1225. [Google Scholar] [CrossRef]
- He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining Rice Distribution and Cropping Intensity in a Mixed Single- and Double-Cropping Region in South China Using All Available Sentinel 1/2 Images. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102351. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A High-Performance and in-Season Classification System of Field-Level Crop Types Using Time-Series Landsat Data and a Machine Learning Approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Johnson, D.M.; Mueller, R. Pre- and within-Season Crop Type Classification Trained with Archival Land Cover Information. Remote Sens. Environ. 2021, 264, 112576. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining Earliest Identifiable Timing of Crops Using All Available Sentinel 1/2 Imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Lin, C.; Zhong, L.; Song, X.-P.; Dong, J.; Lobell, D.B.; Jin, Z. Early- and in-Season Crop Type Mapping without Current-Year Ground Truth: Generating Labels from Historical Information via a Topology-Based Approach. Remote Sens. Environ. 2022, 274, 112994. [Google Scholar] [CrossRef]
Study Site | Year | Number of Agricultural Fields | Number of Rapeseed Fields | Number of S1 Images | ||||
---|---|---|---|---|---|---|---|---|
Window 1 | Window 2 | Window 3 | Window 4 | Window 5 | ||||
La Rochelle (France) | 2018 | 77,649 | 2639 | 31 | 90 | 121 | 167 | 77 |
2019 | 71,485 | 1021 | 30 | 86 | 110 | 150 | 64 | |
2020 | 96,452 | 1519 | 29 | 88 | 118 | 164 | 76 |
Temporal Window | Classifier | F1 (%) | Precision (%) | Recall (%) | Kappa | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | ||
W1 | RF | 67.5 | 55.5 | 78.6 | 92.6 | 90.0 | 96.8 | 54.5 | 39.0 | 69.7 | 0.67 | 0.55 | 0.78 |
Inception | 77.2 | 72.3 | 84.3 | 80.9 | 74.8 | 86.9 | 74.3 | 70.3 | 82.0 | 0.77 | 0.72 | 0.84 | |
W2 | RF | 79.8 | 75.9 | 86.0 | 95.7 | 94.9 | 97.4 | 68.7 | 63.3 | 78.5 | 0.79 | 0.76 | 0.86 |
Inception | 88.9 | 87.2 | 91.1 | 92.3 | 90.9 | 94.5 | 85.9 | 83.1 | 90.7 | 0.89 | 0.87 | 0.91 | |
W3 | RF | 92.2 | 89.9 | 93.7 | 97.6 | 96.8 | 98.0 | 87.5 | 83.9 | 89.8 | 0.92 | 0.90 | 0.94 |
Inception | 95.3 | 94.6 | 95.8 | 95.8 | 95.6 | 96.0 | 94.8 | 93.3 | 96.0 | 0.95 | 0.94 | 0.96 | |
W4 | RF | 95.1 | 94.2 | 95.7 | 97.4 | 97.3 | 97.7 | 92.9 | 91.4 | 93.8 | 0.95 | 0.94 | 0.96 |
Inception | 96.1 | 95.9 | 96.5 | 95.7 | 95.5 | 96.0 | 96.5 | 96.3 | 97.0 | 0.96 | 0.96 | 0.96 | |
W5 | RF | 95.1 | 94.4 | 95.9 | 97.5 | 97.4 | 97.5 | 92.9 | 91.6 | 94.5 | 0.95 | 0.94 | 0.96 |
Inception | 96.2 | 95.6 | 96.5 | 96.1 | 95.9 | 96.3 | 96.3 | 95.4 | 96.8 | 0.96 | 0.96 | 0.97 |
Temporal Window | Classifier | F1 (%) | Precision (%) | Recall (%) | Kappa | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | ||
W2 | RF | 45.6 | 16.3 | 64.8 | 85.9 | 70.6 | 99.0 | 34.3 | 8.9 | 53.7 | 0.45 | 0.16 | 0.65 |
Inception | 41.0 | 23.7 | 57.9 | 74.8 | 43.6 | 95.9 | 33.2 | 13.6 | 58.8 | 0.40 | 0.23 | 0.57 | |
W4 | RF | 92.6 | 87.8 | 95.7 | 96.6 | 94.6 | 98.6 | 89.3 | 79.1 | 96.1 | 0.92 | 0.88 | 0.96 |
Inception | 92.2 | 89.9 | 93.7 | 97.6 | 96.8 | 98.0 | 87.5 | 83.9 | 89.8 | 0.92 | 0.90 | 0.94 | |
W5 | RF | 92.0 | 88.3 | 94.9 | 95.2 | 91.1 | 98.6 | 89.2 | 79.8 | 96.4 | 0.92 | 0.88 | 0.95 |
Inception | 90.0 | 78.3 | 93.4 | 98.1 | 97.2 | 99.3 | 83.4 | 64.7 | 90.0 | 0.90 | 0.78 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleki, S.; Baghdadi, N.; Najem, S.; Dantas, C.F.; Bazzi, H.; Ienco, D. Determining Effective Temporal Windows for Rapeseed Detection Using Sentinel-1 Time Series and Machine Learning Algorithms. Remote Sens. 2024, 16, 549. https://doi.org/10.3390/rs16030549
Maleki S, Baghdadi N, Najem S, Dantas CF, Bazzi H, Ienco D. Determining Effective Temporal Windows for Rapeseed Detection Using Sentinel-1 Time Series and Machine Learning Algorithms. Remote Sensing. 2024; 16(3):549. https://doi.org/10.3390/rs16030549
Chicago/Turabian StyleMaleki, Saeideh, Nicolas Baghdadi, Sami Najem, Cassio Fraga Dantas, Hassan Bazzi, and Dino Ienco. 2024. "Determining Effective Temporal Windows for Rapeseed Detection Using Sentinel-1 Time Series and Machine Learning Algorithms" Remote Sensing 16, no. 3: 549. https://doi.org/10.3390/rs16030549