Spatial Gap-Filling of Himawari-8 Hourly AOD Products Using Machine Learning with Model-Based AOD and Meteorological Data: A Focus on the Korean Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Himawari-8 AOD Data
2.1.2. CAMS Reanalysis AOD
2.1.3. Merra-2 Reanalysis AOD
2.1.4. Meteorological Data
2.2. Methods
2.2.1. Data Preprocessing
2.2.2. Random Forest Model for AOD Gap-Filling
2.2.3. Model Training and Validation
2.2.4. AERONET Comparison Methodology
3. Results
3.1. Gap-Flilling Performance
3.2. Model Behavior and Accuracy Under Different Conditions
3.2.1. Seasonal Variations in AOD Estimation
3.2.2. Model Performance by Missing Pixel Rates and AOD Ranges
3.2.3. Meteorological Effects on AOD Estimation
3.3. Comparisons with AERONET Observations
4. Discussion
4.1. Variable Importance Analysis
4.2. Methodological Considerations for AOD Prediction
4.3. Gap-Filling Results and Statistics Summary
4.4. Spatio-Temporal Analysis of Gap-Filled AOD Data
4.5. Time-Series Comparison with AERONET AOD
4.6. Comparisons with Existing Gap-Filling Approaches
5. Conclusions
- (1)
- By incorporating model-based AOD and meteorological variables, our gap-filling model demonstrated high accuracy, achieving an MAE of 0.044 and a CC of 0.966 in the blind tests. CAMS AOD and MERRA-2 AOD were the most influential predictors, with meteorological variables (DPT, DSSF, and TMP) significantly contributing to the model’s performance.
- (2)
- Comparisons with AERONET observations showed that the gap-filling method effectively balanced enhanced data coverage with maintained accuracy, with a stable MAE of 0.156 and a slight CC decrease from 0.815 to 0.711. The model performed well across all seasons, with particularly strong performance in fall and winter.
- (3)
- The gap-filled hourly AOD data revealed distinct seasonal patterns (winter: 0.245–0.300; spring: 0.354–0.382; summer: 0.381–0.391; fall: 0.240–0.346) and captured the influence of land use characteristics on AOD distributions.
- (4)
- Time-series analysis during 16–22 March 2019 demonstrated the model’s capability to capture both typical and elevated AOD patterns (0.5–2.0) across different environments, while also revealing the critical role of input data quality in ensuring accurate gap-filling results, particularly during high-concentration episodes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Twomey, S. Pollution and the planetary albedo. Atmos. Environ. (1967) 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Wang, K.; Dickinson, R.E.; Liang, S. Clear sky visibility has decreased over land globally from 1973 to 2007. Science 2009, 323, 1468–1470. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Schwartz, J. The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environ. Health Perspect. 2009, 117, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Watson-Parris, D.; Smith, C.J. Large uncertainty in future warming due to aerosol forcing. Nat. Clim. Change 2022, 12, 1111–1113. [Google Scholar] [CrossRef]
- Lee, G.-T.; Ryu, S.-W.; Lee, T.-Y.; Suh, M.-S. Analysis of AOD characteristics retrieved from Himawari-8 using sun photometer in South Korea. Korean J. Remote Sens. 2020, 36, 425–439. [Google Scholar]
- Huebert, B.J.; Bates, T.; Russell, P.B.; Shi, G.; Kim, Y.J.; Kawamura, K.; Carmichael, G.; Nakajima, T. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Higurashi, A.; Nakajima, T. Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR. J. Atmos. Sci. 1999, 56, 924–941. [Google Scholar] [CrossRef]
- Voiland, A. Aerosols: Tiny Particles, Big Impact; NASA Earth Observatory: Greenbelt, MD, USA, 2010.
- Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. Environ. Sci. Technol. 2012, 46, 11913–11921. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ. Sci. Technol. 2016, 50, 4712–4721. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Schwartz, J.; Badaloni, C.; Bellander, T.; Alessandrini, E.; Cattani, G.; De’Donato, F.; Gaeta, A.; Leone, G.; Lyapustin, A. Estimation of daily PM10 concentrations in Italy (2006–2012) using finely resolved satellite data, land use variables and meteorology. Environ. Int. 2017, 99, 234–244. [Google Scholar] [CrossRef] [PubMed]
- de Hoogh, K.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ. Pollut. 2018, 233, 1147–1154. [Google Scholar] [CrossRef]
- Kinne, S.; Schulz, M.; Textor, C.; Guibert, S.; Balkanski, Y.; Bauer, S.E.; Berntsen, T.; Berglen, T.; Boucher, O.; Chin, M. An AeroCom initial assessment–optical properties in aerosol component modules of global models. Atmos. Chem. Phys. 2006, 6, 1815–1834. [Google Scholar] [CrossRef]
- Kaufman, Y.; Tanré, D.; Remer, L.A.; Vermote, E.; Chu, A.; Holben, B. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.; Kleidman, R. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Jackson, J.M.; Liu, H.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.; Huang, H.C. Suomi-NPP VIIRS aerosol algorithms and data products. J. Geophys. Res. Atmos. 2013, 118, 12673–612689. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2. 5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y. Russian forest fire smoke aerosol monitoring using satellite and AERONET data. J. Korean Soc. Atmos. Environ 2004, 20, 437–450. [Google Scholar]
- Gupta, P.; Christopher, S. Seven year particulate matter air quality assessment from surface and satellite measurements. Atmos. Chem. Phys. 2008, 8, 3311–3324. [Google Scholar] [CrossRef]
- Schaap, M.; Apituley, A.; Timmermans, R.; Koelemeijer, R.; De Leeuw, G. Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 2009, 9, 909–925. [Google Scholar] [CrossRef]
- Park, J.-Y.; Kwon, T.-Y.; Lee, J.-Y. Estimation of surface visibility using MODIS AOD. Korean J. Remote Sens. 2017, 33, 171–187. [Google Scholar]
- Yang, X.; Zhao, C.; Yang, Y.; Yan, X.; Fan, H. Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia. Atmos. Chem. Phys. 2021, 21, 3833–3853. [Google Scholar] [CrossRef]
- Gao, L.; Chen, L.; Li, C.; Li, J.; Che, H.; Zhang, Y. Evaluation and possible uncertainty source analysis of JAXA Himawari-8 aerosol optical depth product over China. Atmos. Res. 2021, 248, 105248. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Zhang, Z.; Li, Z.; Su, T.; Feng, L.; Cai, Z.; Wu, H. Evaluation and uncertainty estimate of next-generation geostationary meteorological Himawari-8/AHI aerosol products. Sci. Total Environ. 2019, 692, 879–891. [Google Scholar] [CrossRef]
- Xu, W.; Wang, W.; Chen, B. Comparison of hourly aerosol retrievals from JAXA Himawari/AHI in version 3.0 and a simple customized method. Sci. Rep. 2020, 10, 20884. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, M.; Li, M.; Li, Z.; Tao, J.; Wang, Z.; Chen, L. Himawari-8/AHI aerosol optical depth detection based on machine learning algorithm. Remote Sens. 2022, 14, 2967. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Levy, R.C.; da Silva, A.M.; Krzyzanowski, M.; Chubarova, N.E.; Semutnikova, E.; Cohen, A.J. Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmos. Environ. 2011, 45, 6225–6232. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Su, L.; Tao, J. Satellite observation of regional haze pollution over the North China Plain. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Youn, Y.; Kim, S.; Jeong, Y.; Cho, S.; Kang, J.; Kim, G.; Lee, Y. Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method). Korean J. Remote Sens. 2021, 37, 777–788. [Google Scholar]
- Yu, C.; Chen, L.; Su, L.; Fan, M.; Li, S. Kriging interpolation method and its application in retrieval of MODIS aerosol optical depth. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6. [Google Scholar]
- Singh, M.K.; Gautam, R.; Venkatachalam, P. Bayesian merging of MISR and MODIS aerosol optical depth products using error distributions from AERONET. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5186–5200. [Google Scholar] [CrossRef]
- Tang, Q.; Bo, Y.; Zhu, Y. Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method. J. Geophys. Res. Atmos. 2016, 121, 4034–4048. [Google Scholar] [CrossRef]
- Zhang, R.; Di, B.; Luo, Y.; Deng, X.; Grieneisen, M.L.; Wang, Z.; Yao, G.; Zhan, Y. A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels. Environ. Pollut. 2018, 243, 998–1007. [Google Scholar] [CrossRef]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; De Hoogh, K.; De’Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Z.; Wang, Q.; Ban, J.; Chen, N.X.; Li, T. High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region. Atmos. Environ. 2019, 203, 70–78. [Google Scholar] [CrossRef]
- Chen, A.; Yang, J.; He, Y.; Yuan, Q.; Li, Z.; Zhu, L. High spatiotemporal resolution estimation of AOD from Himawari-8 using an ensemble machine learning gap-filling method. Sci. Total Environ. 2023, 857, 159673. [Google Scholar] [CrossRef]
- Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common retrieval of aerosol properties for imaging satellite sensors. J. Meteorol. Soc. Jpn. Ser. II 2018, 96B, 193–209. [Google Scholar] [CrossRef]
- Fukuda, S.; Nakajima, T.; Takenaka, H.; Higurashi, A.; Kikuchi, N.; Nakajima, T.Y.; Ishida, H. New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager. J. Geophys. Res. Atmos. 2013, 118, 13520–13531. [Google Scholar] [CrossRef]
- Nakajima, T.; Tanaka, M. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transf. 1986, 35, 13–21. [Google Scholar] [CrossRef]
- Ota, Y.; Higurashi, A.; Nakajima, T.; Yokota, T. Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere–ocean system. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 878–894. [Google Scholar] [CrossRef]
- Omar, A.H.; Won, J.G.; Winker, D.M.; Yoon, S.C.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Sayer, A.; Smirnov, A.; Hsu, N.; Holben, B. A pure marine aerosol model, for use in remote sensing applications. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from Himawari-8 geostationary satellite. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3442–3455. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, Y.; Youn, Y.; Cho, S.; Kang, J.; Kim, G.; Lee, Y. A Comparison between multiple satellite AOD products using AERONET sun photometer observations in South Korea: Case study of MODIS, VIIRS, Himawari-8, and Sentinel-3. Korean J. Remote Sens. 2021, 37, 543–557. [Google Scholar]
- Zhang, W.; Xu, H.; Zhang, L. Assessment of Himawari-8 AHI aerosol optical depth over land. Remote Sens. 2019, 11, 1108. [Google Scholar] [CrossRef]
- Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R.J.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J.W.; et al. Aerosol analysis and forecast in the ECMWF Integrated Forecast System. Part II: Data assimilation. J. Geophys. Res. 2009, 114, D13205. [Google Scholar]
- Morcrette, J.-J.; Benedetti, A.; Jones, L.; Kaiser, J.W.; Razinger, M.; Suttie, M.; Aumann, H.H.; Beekmann, M.; Bellouin, N.; Boucher, O.; et al. Aerosol analysis and forecast in the ECMWF Integrated Forecast System. Part I: Forward modelling. J. Geophys. Res. 2009, 114, D06206. [Google Scholar] [CrossRef]
- Tuygun, G.; Elbir, T. Comparative analysis of CAMS aerosol optical depth data and AERONET observations in the Eastern Mediterranean over 19 years. Environ. Sci. Pollut. Res. 2024, 31, 27069–27084. [Google Scholar] [CrossRef] [PubMed]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA-2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef]
- Bi, J.; Belle, J.H.; Wang, Y.; Lyapustin, A.I.; Wildani, A.; Liu, Y. Impacts of snow and cloud covers on satellite-derived PM2.5 levels. Remote Sens. Environ. 2019, 221, 665–674. [Google Scholar] [CrossRef]
- Li, L.; Franklin, M.; Girguis, M.; Lurmann, F.; Wu, J.; Pavlovic, N.; Breton, C.; Gilliland, F.; Habre, R. Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling. Remote Sens. Environ. 2020, 237, 111584. [Google Scholar] [CrossRef]
- Chen, B.; You, S.; Ye, Y.; Fu, Y.; Ye, Z.; Deng, J.; Wang, K.; Hong, Y. An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China. Sci. Total Environ. 2021, 768, 144724. [Google Scholar] [CrossRef]
- Kianian, B.; Liu, Y.; Chang, H.H. Imputing satellite-derived aerosol optical depth using a multi-resolution spatial model and random forest for PM2.5 prediction. Remote Sens. 2021, 13, 126. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Lv, M.; Wang, Y.; Wang, W.; Zhang, Y.; Wang, H.; Yan, X.; Sun, Y.; Cribb, M. Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China. Atmos. Chem. Phys. 2019, 19, 1327–1342. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Praz, C.; Haefele, A.; Ruffieux, D.; Kaufmann, P.; Calpini, B. Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmos. Chem. Phys. 2014, 14, 13205–13221. [Google Scholar] [CrossRef]
- Ding, A.J.; Huang, X.; Nie, W.; Sun, J.N.; Kerminen, V.-M.; Petäjä, T.; Su, H.; Cheng, Y.F.; Yang, X.-Q.; Wang, M.H.; et al. Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett. 2016, 43, 2873–2879. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Boucher, O.; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, T.; Shi, G.; Solomon, S. Radiative Forcing of Climate Change. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001; Volume 350, p. 416. [Google Scholar]
- Myhre, G.; Stordal, F.; Johnsrud, M.; Kaufman, Y.; Rosenfeld, D.; Storelvmo, T.; Kristjansson, J.E.; Berntsen, T.K.; Myhre, A.; Isaksen, I.S. Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos. Chem. Phys. 2007, 7, 3081–3101. [Google Scholar] [CrossRef]
- Yoo, J.-W.; Park, S.-Y.; Jeon, W.; Kim, D.-H.; Lee, H.; Lee, S.-H.; Kim, H.-G. Effect of Aerosol Feedback on Solar Radiation in the Korean Peninsula Using WRF-CMAQ Two-way Coupled Model. J. Korean Soc. Atmos. Environ. 2017, 33, 435–444. [Google Scholar] [CrossRef]
- Alam, K.; Khan, R.; Blaschke, T.; Mukhtiar, A. Variability of aerosol optical depth and their impact on cloud properties in Pakistan. J. Atmos. Sol.-Terr. Phys. 2014, 107, 104–112. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Rossow, W. Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Chen, J.M.; Deng, F.; Chen, M. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2230–2238. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; pp. 1–758. [Google Scholar]
- Louppe, G. Understanding Random Forests. Ph.D. Thesis, University of Liege, Liège, Belgium, 2014. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Long, Z.; Jin, Z.; Meng, Y.; Ma, J. Generation of High Temporal Resolution Full-Coverage Aerosol Optical Depth Based on Remote Sensing and Reanalysis Data. Remote Sens. 2023, 15, 2769. [Google Scholar] [CrossRef]
Aspect | Description |
---|---|
Product Used | Level 3 AOT_Merged |
Data Parameter | 500 nm AOD, Ångström Exponent (AE), Quality Analysis (QA) flag |
Spatial Resolution | 0.05° × 0.05° grid (in longitude and latitude) |
Temporal Resolution | Hourly (Level 3) |
Daily Coverage | 8 hourly images per day (00 UTC to 07 UTC, corresponding to daylight hours in Korea) |
Key AHI Channels Used | 0.47 μm, 0.51 μm, 0.64 μm (visible), 0.86 μm, 1.6 μm (near-infrared) |
Conversion to 500 nm AOD | Interpolation based on Ångström exponent |
Data | Source | Spatial Resolution | Temporal Resolution | |
---|---|---|---|---|
Himawari-8/AHI | AOD | JAXA | 0.05° × 0.05° | hourly |
CAMS | AOD | ECMWF | 0.75° × 0.75° | 3-hourly |
MERRA-2 | AOD | NASA | 0.5° × 0.625° (latitude × longitude) | hourly |
LDAPS | Meteorology | KMA | 1.5 km × 1.5 km | 3-hourly |
Validation Method | n | MBE | MAE | RMSE | CC |
---|---|---|---|---|---|
CV | 433,286 | 0.000 | 0.046 | 0.066 | 0.963 |
Blind test | 100,000 | 0.000 | 0.044 | 0.064 | 0.966 |
Season | n | MBE | MAE | RMSE | CC |
---|---|---|---|---|---|
Spring | 45,091 | 0.002 | 0.048 | 0.068 | 0.970 |
Summer | 11,627 | 0.000 | 0.060 | 0.082 | 0.939 |
Fall | 10,625 | 0.001 | 0.038 | 0.058 | 0.964 |
Winter | 32,657 | −0.002 | 0.036 | 0.051 | 0.946 |
Missing Pixel Rates | n | MBE | MAE | RMSE | CC |
---|---|---|---|---|---|
Low (<60%) | 37,707 | −0.003 | 0.069 | 0.097 | 0.941 |
High (>60%) | 62,293 | 0.008 | 0.058 | 0.083 | 0.930 |
AOD | n | MBE | MAE | NRMSE | CC |
---|---|---|---|---|---|
Low (<0.3) | 58,550 | 0.042 | 0.052 | 47.0 | 0.711 |
Medium (0.3–0.8) | 36,945 | −0.046 | 0.068 | 19.1 | 0.800 |
High (>0.8) | 4505 | −0.163 | 0.166 | 20.9 | 0.784 |
Variable | Range | n | MBE | MAE | RMSE | CC |
---|---|---|---|---|---|---|
DPT | Low | 15,551 | 0.001 | 0.033 | 0.047 | 0.956 |
Medium | 45,894 | −0.001 | 0.062 | 0.087 | 0.940 | |
High | 38,555 | 0.000 | 0.077 | 0.105 | 0.921 | |
DSSF | Low | 339 | −0.009 | 0.049 | 0.074 | 0.964 |
Medium | 46,348 | −0.001 | 0.057 | 0.083 | 0.933 | |
High | 53,313 | 0.001 | 0.068 | 0.096 | 0.938 | |
TMP | Low | 2324 | 0.001 | 0.023 | 0.033 | 0.943 |
Medium | 65,668 | 0.000 | 0.058 | 0.083 | 0.934 | |
High | 32,008 | −0.001 | 0.077 | 0.106 | 0.929 |
Category | Subcategory | Data Type | n | MBE | MAE | RMSE | CC |
---|---|---|---|---|---|---|---|
Seasonal | Spring | Original | 197 | −0.101 | 0.169 | 0.203 | 0.872 |
Gap-filled | 1152 | −0.047 | 0.172 | 0.270 | 0.640 | ||
Summer | Original | 68 | −0.001 | 0.124 | 0.149 | 0.768 | |
Gap-filled | 1016 | −0.025 | 0.194 | 0.295 | 0.653 | ||
Fall | Original | 41 | 0.125 | 0.161 | 0.198 | 0.310 | |
Gap-filled | 768 | 0.096 | 0.114 | 0.134 | 0.613 | ||
Winter | Original | 40 | 0.006 | 0.144 | 0.167 | 0.599 | |
Gap-filled | 1213 | −0.010 | 0.109 | 0.170 | 0.561 | ||
Site-specific | Anmyon (Non-Urban/Forest) | Original | 60 | 0.042 | 0.121 | 0.143 | 0.880 |
Gap-filled | 757 | 0.030 | 0.168 | 0.240 | 0.721 | ||
Gangneung_WNU (Non-Urban/Close to Forest) | Original | 4 | 0.080 | 0.092 | 0.114 | −0.634 | |
Gap-filled | 840 | 0.053 | 0.102 | 0.135 | 0.486 | ||
Gwangju_GIST (Urban) | Original | 30 | −0.187 | 0.234 | 0.271 | 0.850 | |
Gap-filled | 211 | −0.044 | 0.133 | 0.230 | 0.670 | ||
Hankuk_UFS (Non-Urban/Close to Forest) | Original | 116 | −0.096 | 0.144 | 0.169 | 0.880 | |
Gap-filled | 777 | −0.068 | 0.177 | 0.276 | 0.620 | ||
Seoul_SNU (Urban) | Original | 71 | −0.029 | 0.159 | 0.194 | 0.819 | |
Gap-filled | 492 | −0.034 | 0.151 | 0.254 | 0.614 | ||
Yonsei_University | Original | 65 | 0.022 | 0.175 | 0.210 | 0.697 | |
(Urban) | Gap-filled | 1072 | −0.006 | 0.151 | 0.237 | 0.679 |
Season | Before Gap-Filling | After Gap-Filling | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Standard Deviation | Null Pixel Ratio of Land (%) | Min | Mean | Max | Standard Deviation | Null Pixel Ratio of Land (%) | |
Spring | 0.004 | 0.340 | 2.371 | 0.069 | 89.5 | 0.004 | 0.363 | 2.371 | 0.094 | 0.0 |
Summer | 0.009 | 0.370 | 1.719 | 0.085 | 97.2 | 0.009 | 0.357 | 1.780 | 0.101 | 0.0 |
Fall | 0.005 | 0.247 | 1.969 | 0.115 | 97.3 | 0.005 | 0.290 | 1.969 | 0.071 | 0.0 |
Winter | 0.011 | 0.224 | 1.212 | 0.059 | 92.1 | 0.011 | 0.270 | 1.250 | 0.068 | 0.0 |
Full-year | 0.004 | 0.298 | 2.371 | 0.082 | 94.0 | 0.004 | 0.312 | 2.371 | 0.084 | 0.0 |
Month | Before Gap-Filling | After Gap-Filling | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Standard Deviation | Null Pixel Ratio of Land (%) | Min | Mean | Max | Standard Deviation | Null Pixel Ratio of Land (%) | |
January | 0.024 | 0.224 | 0.822 | 0.060 | 95.2 | 0.024 | 0.264 | 1.020 | 0.067 | 0.0 |
February | 0.012 | 0.230 | 1.210 | 0.068 | 91.5 | 0.012 | 0.300 | 1.250 | 0.078 | 0.0 |
March | 0.006 | 0.378 | 2.371 | 0.100 | 88.3 | 0.006 | 0.382 | 2.370 | 0.100 | 0.0 |
April | 0.004 | 0.304 | 2.080 | 0.099 | 86.7 | 0.004 | 0.354 | 2.080 | 0.103 | 0.0 |
May | 0.007 | 0.338 | 1.250 | 0.116 | 93.2 | 0.007 | 0.354 | 1.250 | 0.082 | 0.0 |
June | 0.009 | 0.422 | 1.700 | 0.133 | 93.4 | 0.009 | 0.391 | 1.700 | 0.102 | 0.0 |
July | 0.016 | 0.416 | 1.780 | 0.100 | 99.0 | 0.016 | 0.381 | 1.780 | 0.117 | 0.0 |
August | 0.019 | 0.292 | 1.290 | 0.075 | 98.9 | 0.019 | 0.300 | 1.290 | 0.085 | 0.0 |
September | 0.007 | 0.223 | 0.966 | 0.075 | 98.9 | 0.007 | 0.240 | 0.966 | 0.067 | 0.0 |
October | 0.008 | 0.264 | 1.970 | 0.085 | 98.3 | 0.008 | 0.346 | 1.970 | 0.079 | 0.0 |
November | 0.005 | 0.242 | 1.550 | 0.065 | 94.6 | 0.005 | 0.283 | 1.550 | 0.067 | 0.0 |
December | 0.011 | 0.218 | 1.120 | 0.056 | 89.3 | 0.011 | 0.245 | 1.120 | 0.060 | 0.0 |
Full-year | 0.004 | 0.298 | 2.371 | 0.082 | 94.0 | 0.004 | 0.312 | 2.371 | 0.084 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youn, Y.; Kim, S.; Kim, S.H.; Lee, Y. Spatial Gap-Filling of Himawari-8 Hourly AOD Products Using Machine Learning with Model-Based AOD and Meteorological Data: A Focus on the Korean Peninsula. Remote Sens. 2024, 16, 4400. https://doi.org/10.3390/rs16234400
Youn Y, Kim S, Kim SH, Lee Y. Spatial Gap-Filling of Himawari-8 Hourly AOD Products Using Machine Learning with Model-Based AOD and Meteorological Data: A Focus on the Korean Peninsula. Remote Sensing. 2024; 16(23):4400. https://doi.org/10.3390/rs16234400
Chicago/Turabian StyleYoun, Youjeong, Seoyeon Kim, Seung Hee Kim, and Yangwon Lee. 2024. "Spatial Gap-Filling of Himawari-8 Hourly AOD Products Using Machine Learning with Model-Based AOD and Meteorological Data: A Focus on the Korean Peninsula" Remote Sensing 16, no. 23: 4400. https://doi.org/10.3390/rs16234400
APA StyleYoun, Y., Kim, S., Kim, S. H., & Lee, Y. (2024). Spatial Gap-Filling of Himawari-8 Hourly AOD Products Using Machine Learning with Model-Based AOD and Meteorological Data: A Focus on the Korean Peninsula. Remote Sensing, 16(23), 4400. https://doi.org/10.3390/rs16234400