Interpretation and Mapping Tree Crown Diameter Using Spatial Heterogeneity in Relation to the Radiative Transfer Model Extracted from GF-2 Images in Planted Boreal Forest Ecosystems
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Ground Data Collection
2.3. Remote Sensing Data and Image Pre-Processing
2.4. Interpretation of Spatial Heterogeneity
2.4.1. Spatial Heterogeneity of Forest Crown
2.4.2. The Response of Spatial Heterogeneity with CD Values
2.4.3. Simulated Images of Spatial Heterogeneity in Forest Ecosystems
2.5. Variable Extraction and Selection
2.5.1. Variable Extraction Methods
2.5.2. Variables Extracted from GF-2
2.5.3. Variable Selection and Combination
2.6. Models of Mapping Tree CD Values and Assessment
3. Result
3.1. Spatial Heterogeneity Extracted from Simulated Images
3.2. The Results of Spatial Heterogeneity Related with the CD
3.3. Sensitivity between Tree CDs and Variables
3.4. Results of Mapped CDs Using GF-2 Images
4. Discussion
4.1. The Relationships between Spatial Heterogeneity and Forest Crowns
4.2. Matching of Variable Types and Feature Extraction Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Law, B.E.; Cescatti, A.; Baldocchi, D.D. Leaf area distribution and radiative transfer in open-canopy forests: Implications for mass and energy exchange. Tree Physiol. 2001, 21, 777–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Dickinson, M.B.; Su, L.; Zhang, S.; Yaussey, D. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: Across-sensor and across-site comparisons. Remote Sens. Environ. 2010, 114, 1099–1107. [Google Scholar] [CrossRef]
- Song, C.R. Estimating tree crown size with spatial information of high resolution optical remotely sensed imagery. Int. J. Remote Sens. 2007, 28, 3305–3322. [Google Scholar] [CrossRef]
- Zhang, W.; Ke, Y.; Quackenbush, L.J.; Zhang, L. Using error-in-variable regression to predict tree diameter and crown width from remotely sensed imagery. Can. J. For. Res. 2010, 40, 1095–1108. [Google Scholar] [CrossRef]
- Liu, Z.H.; Ye, Z.L.; Xu, X.D.; Lin, H.; Zhang, T.C.; Long, J.P. Mapping Forest Stock Volume Based on Growth Characteristics of Crown Using Multi-Temporal Landsat 8 OLI and ZY-3 Stereo Images in Planted Eucalyptus Forest. Remote Sens. 2022, 14, 5082. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Jiang, F.G.; Kutia, M.; Ma, K.S.; Chen, S.; Long, J.P.; Sun, H. Estimating the aboveground biomass of coniferous Forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. [Google Scholar] [CrossRef]
- Long, J.; Lin, H.; Wang, G.; Sun, H.; Yan, E. Mapping Growing Stem Volume of Chinese Fir Plantation Using a Saturation-based Multivariate Method and Quad-polarimetric SAR Images. Remote Sens. 2019, 11, 1872. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Lin, H.; Long, J.; Zhang, M.; Liu, Z. Analyzing the Saturation of Growing Stem Volume Based on ZY-3 Stereo and Multispectral Images in Planted Coniferous Forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 50–61. [Google Scholar] [CrossRef]
- Ke, Y.H.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ohtani, M.; Washitani, I. Tree Crown Size Estimated Using Image Processing: A Biodiversity Index for Sloping Subtropical Broad-Leaved Forests. Trop. Conserv. Sci. 2017, 10, 194008291772178. [Google Scholar] [CrossRef] [Green Version]
- Li, X.W.; Strahler, A.H. Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy. IEEE Trans. Geosci. Remote Sens. 1986, 24, 906–919. [Google Scholar] [CrossRef]
- Ke, Q.H.; Quackenbush, L.J. A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery. Int. J. Remote Sens. 2011, 32, 3625–3647. [Google Scholar] [CrossRef]
- Gougeon Francois, A.; Leckie Donald, G. The individual tree crown approach applied to Ikonos images of a coniferous plantation area. Photogramm. Eng. Remote Sens. 2006, 72, 1287–1297. [Google Scholar] [CrossRef]
- Gougeon Francois, A.; Leckie Donald, G. Forest information extraction from high spatial resolution images using an individual tree crown approach. Quintessence 2003, 12, 133. [Google Scholar]
- Asner, G.P.; Palace, M.; Keller, M.; Pereira, R., Jr.; Silva, J.N.M.; Zweede, J.C. Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations. Biotropica 2010, 34, 483–492. [Google Scholar] [CrossRef]
- Palace, M.; Keller, M.; Asner, G.P.; Hagen, S.; Braswell, B. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties. Biotropica 2008, 40, 141–150. [Google Scholar] [CrossRef]
- Pouliot, D.A.; King, D.J.; Bell, F.W.; Pitt, D.G. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 2002, 82, 322–334. [Google Scholar] [CrossRef]
- Pouliot, D.A.; King, D.J. Approaches for optimal automated individual tree crown detection in regenerating coniferous forests. Can. J. Remote Sens. 2005, 31, 255–267. [Google Scholar] [CrossRef]
- Leckie, D.G.; Gougeon, F.A.; Walsworth, N.; Paradine, D. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sens. Environ. 2003, 85, 355–369. [Google Scholar] [CrossRef]
- Zhang, C.; Denka, S.; Cooper, H.; Mishra, D.R. Quantification of sawgrass marsh aboveground biomass in the coastal Everglades using object-based ensemble analysis and Landsat data. Remote Sens. Environ. 2018, 204, 366–379. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Bicheron, P.; Chen, J.M.; Leroy, M.; Cihlar, J. Investigation of directional reflectance in boreal forests with an improved four-scale model and airborne POLDER data. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1396–1414. [Google Scholar] [CrossRef]
- Wolter, P.T.; Townsend, P.A.; Sturtevant, B.R. Estimation of forest structural parameters using 5 and 10 m SPOT-5 satellite data. Remote Sens. Environ. 2009, 113, 2019–2036. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, Z.; Tian, X. Exploration of Machine Learning Techniques in Emulating a Coupled Soil–Canopy–Atmosphere Radiative Transfer Model for Multi-Parameter Estimation from Satellite Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8522–8533. [Google Scholar] [CrossRef]
- Masemola, C.; Ramoelo, A.; Cho, M.A. Towards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa. ISPRS J. Photogramm. Remote Sens. 2020, 166, 153–168. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Li, X.; Long, J.; Zhang, M.; Liu, Z.; Lin, H. Coniferous Plantations Growing Stock Volume Estimation Using Advanced Remote Sensing Algorithms and Various Fused Data. Remote Sens. 2021, 13, 3468. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Long, J.P.; Lin, H. A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble Learning Algorithm. Remote Sens. 2021, 13, 3910. [Google Scholar] [CrossRef]
- Nandy, S.; Srinet, R.; Padalia, H. Mapping Forest Height and Aboveground Biomass by Integrating ICESat-2, Sentinel-1 and Sentinel-2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India. Geophys. Res. Lett. 2021, 48, e2021GL093799. [Google Scholar] [CrossRef]
- Xu, X.; Lin, H.; Liu, Z.; Ye, Z.; Li, X.; Long, J. A Combined Strategy of Improved Variable Selection and Ensemble Algorithm to Map the Growing Stem Volume of Planted Coniferous Forest. Remote Sens. 2021, 13, 4631. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Qi, J.; Xie, D.; Yin, T.; Yan, G.; Gastellu-Etchegorry, J.P.; Li, L.; Zhang, W.; Mu, X.; Norford, L.K. LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sens. Environ. 2018, 221, 695–706. [Google Scholar] [CrossRef]
- North, P.R.J. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans. Geosci. Remote Sens. 1996, 34, 946–956. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Colombo, R.; Meroni, M.; Busetto, L.; Panigada, C.; Brivio, P.A.; Marino, C.M.; Miller, J.R. Use of semi-empirical and radiative transfer models to estimate biophysical parameters in a sparse canopy forest. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 3–5 March 2003; pp. 133–144. [Google Scholar] [CrossRef]
- Kuusk, A. Assessing forest parameters by radiative transfer modelling. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 7313–7316. [Google Scholar] [CrossRef]
- Wang, Z.; Skidmore, A.K.; Darvishzadeh, R.; Wang, T. Mapping forest canopy nitrogen content by inversion of coupled leaf-canopy radiative transfer models from airborne hyperspectral imagery. Agric. For. Meteorol. 2018, 253–254, 247–260. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, C.; Liu, Q.; Huang, W.; Wang, J. Inversion of a Radiative Transfer Model for Estimating Forest LAI from Multisource and Multiangular Optical Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 988–1000. [Google Scholar] [CrossRef]
- Wu, Y.; Strahler, A.H. Remote Estimation of Crown Size, Stand Density, and Biomass on the Oregon Transect. Ecol. Appl. 1994, 4, 299–312. [Google Scholar] [CrossRef]
- Franklin, S.E.; Gerylo, M.A.W.G. Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia. Int. J. Remote Sens. 2001, 22, 2627–2632. [Google Scholar] [CrossRef]
- Treitz, P.; Howarth, P. High Spatial Resolution Remote Sensing Data for Forest Ecosystem Classification: An Examination of Spatial Scale. Remote Sens. Environ. 2000, 72, 268–289. [Google Scholar] [CrossRef]
- St-Onge, B.A.; Cavayas, F.V. Automated forest structure mapping from high resolution imagery based on directional semivariogram estimates. Remote Sens. Environ. 1997, 61, 82–95. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, S.; Akcay, H.G.; Wassenaar, T. Automatic Mapping of Linear Woody Vegetation Features in Agricultural Landscapes Using Very High Resolution Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 48, 511–522. [Google Scholar] [CrossRef]
- Zhang, C. Multiscale quantification of urban composition from EO-1/Hyperion data using object-based spectral unmixing. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 153–162. [Google Scholar] [CrossRef]
- Li, X.; Lin, H.; Long, J.; Xu, X. Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method. Remote Sens. 2021, 13, 2740. [Google Scholar] [CrossRef]
- Blinn, J.F. Models of Light Reflection for Computer Synthesized Pictures; ACM: New York, NY, USA, 1977; pp. 192–198. [Google Scholar]
- Panigrahi, S.K.; Gupta, S.; Sahu, P.K. Curvelet-based multiscale denoising using non-local means & guided image filter. IET Image Process. 2018, 12, 909–918. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.G.; Andrew, R.S.; Mykola, K.; Wang, G.X.; Liu, H.; Sun, H. A Modified kNN Method for Mapping the Leaf Area Index in Arid and Semi Arid Areas of China. Remote Sens. 2020, 12, 1884. [Google Scholar] [CrossRef]
- Tang, X.Z.; Machimura, T.; Li, J.F.; Liu, W.; Hong, H.Y. A novel optimized repeatedly random undersampling for selecting negative samples: A case study in an SVM-based forest fire susceptibility assessment. J. Environ. Manag. 2020, 271, 111041. [Google Scholar] [CrossRef] [PubMed]
Tree Parameters | Range | Average Value | Coefficient of Variation (%) |
---|---|---|---|
DBH (cm) | 6.8–27.9 | 16.7 | 32.8 |
Height (m) | 6.8–23.7 | 13.6 | 27.3 |
CH (m) | 3.5–12.3 | 7.1 | 32.8 |
CD (m) | 1.8–6.5 | 3.4 | 30.2 |
Density (103/ha) | 0.26–6.5 | 1.7 | 70.1 |
Number | Feature Type | Filter-Based | Objected-Based |
---|---|---|---|
1 | Spectral features | SFs | SFs |
2 | Texture features | TFs | TFs |
3 | Spatial heterogeneity | SH | SH |
4 | Combinations within feature extractions | SFs + SH | SFs + SH |
5 | Combinations within feature extractions | SFs + TFs | SFs + TFs |
6 | Combinations between feature extractions | SFs (objected) and SH (filter) | |
7 | Combinations between feature extractions | SFs (objected) and TFs (filter) |
Feature Extraction Method | Data Set | Model | Size or Scale | Accuracy Indices | ||
---|---|---|---|---|---|---|
R2 | RMSE (m) | rRMSE (%) | ||||
Filter-based | SFs | RF | 25 | 0.37 | 0.72 | 21.82 |
TFs | KNN | 25 | 0.41 | 0.70 | 21.21 | |
SH | KNN | 25 | 0.49 | 0.65 | 19.70 | |
SFs and TFs | RF | 25 | 0.49 | 0.65 | 19.70 | |
SFs and SH | RF | 25 | 0.59 | 0.59 | 17.88 | |
Object-based | SFs | RF | 70 | 0.44 | 0.68 | 20.61 |
TFs | RF | 20 | 0.29 | 0.75 | 22.73 | |
SH | RF | 70 | 0.43 | 0.67 | 20.30 | |
SFs and TFs | RF | 40 | 0.45 | 0.66 | 20.00 | |
SFs and SH | RF | 70 | 0.55 | 0.61 | 18.39 | |
Combination | SFs (object) and TFs (filter) | RF | Object (80) and filter (25) | 0.60 | 0.56 | 16.68 |
SFs (object) and SH (filter) | RF | Object (70) and filter (25) | 0.66 | 0.52 | 15.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Long, J.; Lin, H.; Du, K.; Xu, X.; Liu, H.; Yang, P.; Zhang, T.; Ye, Z. Interpretation and Mapping Tree Crown Diameter Using Spatial Heterogeneity in Relation to the Radiative Transfer Model Extracted from GF-2 Images in Planted Boreal Forest Ecosystems. Remote Sens. 2023, 15, 1806. https://doi.org/10.3390/rs15071806
Liu Z, Long J, Lin H, Du K, Xu X, Liu H, Yang P, Zhang T, Ye Z. Interpretation and Mapping Tree Crown Diameter Using Spatial Heterogeneity in Relation to the Radiative Transfer Model Extracted from GF-2 Images in Planted Boreal Forest Ecosystems. Remote Sensing. 2023; 15(7):1806. https://doi.org/10.3390/rs15071806
Chicago/Turabian StyleLiu, Zhaohua, Jiangping Long, Hui Lin, Kai Du, Xiaodong Xu, Hao Liu, Peisong Yang, Tingchen Zhang, and Zilin Ye. 2023. "Interpretation and Mapping Tree Crown Diameter Using Spatial Heterogeneity in Relation to the Radiative Transfer Model Extracted from GF-2 Images in Planted Boreal Forest Ecosystems" Remote Sensing 15, no. 7: 1806. https://doi.org/10.3390/rs15071806
APA StyleLiu, Z., Long, J., Lin, H., Du, K., Xu, X., Liu, H., Yang, P., Zhang, T., & Ye, Z. (2023). Interpretation and Mapping Tree Crown Diameter Using Spatial Heterogeneity in Relation to the Radiative Transfer Model Extracted from GF-2 Images in Planted Boreal Forest Ecosystems. Remote Sensing, 15(7), 1806. https://doi.org/10.3390/rs15071806