Forecast Characteristics of Radar Data Assimilation Based on the Scales of Precipitation Systems
Abstract
:1. Introduction
2. Observations, Method, Experiment Set Up and Evaluation Methodology
2.1. Observations
2.2. Description of Selected Cases
2.3. WRF Model Setup
2.4. WRF 3D-Var Assimilation System
2.5. Evaluation Parameters
2.5.1. The Contoured Frequency by Altitude Diagram (CFAD)
2.5.2. Time-Height Cross Sections (THCS)
2.5.3. Hydrometeor Profile Analysis
3. Results
3.1. Analysis of the Incremental Initial Field
3.2. Simulation Results of Precipitation
3.3. CFAD, THCS, and Hydrometeor Profile
3.4. Verification of the Precipitation
4. Summary and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roberts, N.M.; Lean, H.W. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Min, J.; Huang, X.-Y.; Minnis, P.; Zhang, R.; Haggerty, J.; Palikonda, R. Variational Assimilation of Cloud Liquid/Ice Water Path and Its Impact on NWP. J. Appl. Meteorl. Climatol. 2015, 54, 1809–1825. [Google Scholar] [CrossRef]
- Bouttier, F. Fine Scale Versus Large Scale Data Assimilation—A Discussion. Fifth WMO Symposium on Data Assimilation; WMO World Weather Research Programme: Melbourne, VIC, Australia, 2009; p. 8. Available online: https://www.researchgate.net/publication/268376800_Fine_scale_versus_large_scale_data_assimilation_-a_discussion (accessed on 15 October 2019).
- Wang, H.; Sun, J.; Fan, S.; Huang, X.-Y. Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteorol. Climatol. 2013, 52, 889–902. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Zhang, X.; Huang, X.-Y.; Auligné, T. Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Weather Rev. 2013, 141, 2224–2244. [Google Scholar] [CrossRef]
- Tai, S.-L.; Liou, Y.-C.; Sun, J.; Chang, S.-F. The development of a terrain-resolving scheme for the forward model and its adjoint in the four-dimensional Variational Doppler Radar Analysis System (VDRAS). Mon. Weather Rev. 2017, 145, 289–306. [Google Scholar] [CrossRef]
- Zhang, F.; Snyder, C.; Sun, J. Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev. 2004, 132, 1238–1253. [Google Scholar] [CrossRef]
- Zhang, J. Moisture and Diabatic Initialization Based on Radar and Satellite Observation. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 1999; p. 194. [Google Scholar]
- Zhang, J.; Carr, F.; Brewster, K. ADAS cloud analysis. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ. Am. Meteorol. Soc. 1998, 79, 185–188. [Google Scholar]
- Sun, J.; Crook, N.A. Dynamical and microphysical retrieval from doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci. 1997, 54, 1642–1661. [Google Scholar] [CrossRef]
- Sun, J.; Crook, N.A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part2: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci. 1998, 55, 835–852. [Google Scholar] [CrossRef]
- Hu, M.; Xue, M.; Brewster, K. 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Weather Rev. 2006, 134, 675–698. [Google Scholar] [CrossRef]
- Souto, M.J.; Balseiro, C.F.; Pérez-Muñuzuri, V.; Xue, M.; Brewster, K. Impact of cloud analysis on numerical weather prediction in the Galician region of Spain. J. Appl. Meteorol. 2003, 42, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.-H.; Zhang, X.-L.; Wei, J.; Zhao, S.-X. A study on severe heavy rainfall in north China during the 1990s (in Chinese). Clim. Environ. Res. 2005, 10, 492–506. [Google Scholar] [CrossRef]
- Weygandt, S.S.; Benjamin, S.G.; Smirnova, T.G.; Brown, J.M. Assimilation of radar reflectivity data using a diabatic digital filter within the Rapid Update Cycle. In Proceedings of the 12th conference on IOAS-AOLS, New Orleans, LA, USA, 20–24 January 2008; American Meteorological Society: Geneseo, NY, USA, 2008; Volume 8, p. 4. Available online: https://ams.confex.com/ams/pdfpapers/134081.pdf (accessed on 15 November 2019).
- Ha, J.-H.; Kim, H.; Lee, D.-K. Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea. Adv. Atmos. Sci. 2011, 28, 573–590. [Google Scholar] [CrossRef]
- Aksoy, A.; Dowell, D.C.; Snyder, C. A multi-case comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Weather Rev. 2010, 138, 1273–1292. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Sun, J. Multiple-radar data assimilation and short range quantitative precipitation forecasting of a squall line observed during IHOP 2002. Mon. Weather Rev. 2007, 135, 3381–3404. [Google Scholar] [CrossRef]
- Caya, A.; Sun, J.; Snyder, C. A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Weather Rev. 2005, 133, 3081–3094. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Auligné, T.; Morrison, H. Impact of Microphysics Scheme Complexity on the Propagation of Initial Perturbations. Mon. Weather Rev. 2012, 140, 2287–2296. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, H. WRF-ARW Variational Storm-Scale Data Assimilation: Current Capabilities and Future Developments. Adv. Meteorol. 2013, 2013, 815910. [Google Scholar] [CrossRef]
- Dowell, D.C.; Wicker, L.J.; Snyder, C. Ensemble kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma city supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Weather Rev. 2011, 139, 272–294. [Google Scholar] [CrossRef] [Green Version]
- Bick, T.; Simmer, C.; Trömel, S.; Wapler, K.; Franssen, H.H.; Stephan, K.; Blahak, U.; Schraff, C.; Reich, H.; Zeng, Y.; et al. Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Q. J. R. Meteorol. Soc. 2016, 142, 1490–1504. [Google Scholar] [CrossRef] [Green Version]
- Zupanski, M. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev. 2005, 133, 1710–1726. [Google Scholar] [CrossRef]
- Gao, J.; Fu, C.; Stensrud, D.J.; Kain, J.S. OSSEs for an Ensemble 3DVAR Data Assimilation System with Radar Observations of Convective Storms. J. Atmos. Sci. 2016, 73, 2403–2426. [Google Scholar] [CrossRef]
- Lee, J.-W.; Min, K.-H.; Lee, Y.-H.; Lee, G. X-Net-Based radar data assimilation study over the Seoul metropolitan area. Remote Sens. 2020, 12, 893. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.Y.; Jin, Y. High-resolution radar data assimilation for Hurricane Isabel (2003) at landfall. Bull. Am. Meteorol. Soc. 2008, 89, 1355–1372. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Stensrud, D.J. Assimilation of reflectivity data in a convective-scale, cycled 3D-VAR framework with hydrometeor classification. J. Atmos. Sci. 2012, 69, 1054–1065. [Google Scholar] [CrossRef]
- Tong, M.; Xue, M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Weather Rev. 2005, 133, 1789–1807. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Min, K.-H. High-resolution modeling study of an isolated convective storm over Seoul Metropolitan area. Meteorol. Atmos. Phys. 2019, 131, 1549–1564. [Google Scholar] [CrossRef]
- Vendrasco, E.P.; Sun, J.; Herdies, D.L.; de Angelis, C.F. Constraining a 3DVAR Radar Data Assimilation System with Large-Scale Analysis to Improve Short-Range Precipitation Forecasts. J. Appl. Meteorol. Climatol. 2016, 55, 673–690. [Google Scholar] [CrossRef]
- Sugimoto, S.; Crook, N.A.; Sun, J.; Xiao, Q.; Barker, D. Assimilation of Doppler radar data with WRF 3DVAR: Evaluation of its potential benefits to quantitative precipitation forecasting through observing system simulation experiments. Mon. Weather Rev. 2009, 137, 4011–4029. [Google Scholar] [CrossRef]
- Xiao, Q.; Kuo, Y.-H.; Sun, J.; Lee, W.-C.; Lim, E.; Guo, Y.-R.; Barker, D.M. Assimilation of doppler radar observations with a regional 3DVAR system: Impact of doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteorol. 2005, 44, 768–788. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Carley, J.; Wicker, L.J.; Karstens, C. A Comparison of Multiscale GSI-Based EnKF and 3DVar Data Assimilation Using Radar and Conventional Observations for Midlatitude Convective-Scale Precipitation Forecasts. Mon. Weather Rev. 2015, 143, 3087–3108. [Google Scholar] [CrossRef]
- Chang, S.-F.; Liou, Y.-C.; Sun, J.; Tai, S.-L. The Implementation of the Ice-Phase Microphysical Process into a Four-Dimensional Variational Doppler Radar Analysis System (VDRAS) and Its Impact on Parameter Retrieval and Quantitative Precipitation Nowcasting. J. Atmos. Sci. 2016, 73, 1015–1038. [Google Scholar] [CrossRef]
- Lai, A.; Min, J.; Gao, J.; Ma, H.; Cui, C.; Xiao, Y.; Wang, Z. Assimilation of Radar Data, Pseudo Water Vapor, and Potential Temperature in a 3DVAR Framework for Improving Precipitation Forecast of Severe Weather Events. Atmosphere 2020, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Mazzarella, V.; Maiello, I.; Ferretti, R.; Capozzi, V.; Picciotti, E.; Alberoni, P.P.; Marzano, F.S.; Budillon, G. Reflectivity and velocity radar data assimilation for two flash flood events in central Italy, A comparison between 3D and 4D variational methods. Q. J. R. Meteorol. Soc. 2019, 146, 348–366. [Google Scholar] [CrossRef]
- Bachmann, K.; Keil, C.; Craig, G.C. Predictability of Deep Convection in Idealized and Operational Forecasts: Effects of Radar Data Assimilation, Orography, and Synoptic Weather Regime. Mon. Weather Rev. 2020, 148, 63–81. [Google Scholar] [CrossRef]
- Min, K.-H.; Choo, S.H.; Lee, D.H.; Lee, G.W. Evaluation of WRF cloud microphysics scheme using radar observations. Wea. Forecast. 2015, 30, 1571–1589. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Rabier, F. The interaction between model resolution, observation resolution and observation density in data assimilation: An one-dimensional study. Q. J. R. Meteorol. Soc. 2002, 128, 1367–1386. [Google Scholar] [CrossRef] [Green Version]
- Ochotta, T.; Gebhardt, C.; Bondarenko, V.; Saupe, D.; Wergen, W. On thinning methods for data assimilation of satellite observations. In Proceedings of the 87th AMS Annual Meeting, San Antonio, TX, USA, 14–18 January 2007; pp. 1–4. Available online: https://ams.confex.com/ams/87ANNUAL/techprogram/paper_118511.htm (accessed on 20 September 2019).
- Ye, B.-Y.; Lee, G.; Park, H.-M. Identification and removal of non-meteorological echoes in dual-polarization radar data based on a fuzzy logic algorithm. Adv. Atmos. Sci. 2015, 32, 1217–1230. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree x 0.1 Degree V06; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Das, M.K.; Das, S.; Rahman, M. Chapter 5. Simulation of Mesoscale Convective Systems Associated with Squalls Using 3DVAR Data Assimilation over Bangladesh. In High-Impact Weather Events over the SAARC Region; Springer: Berlin/Heidelberg, Germany, 2015; pp. 63–72. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version. Natl. Cent. Atmos. Res. 2015, 3, 87–91. [Google Scholar]
- Barker, D.M.; Huang, W.; Guo, Y.R.; Xiao, Q.N. A three dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Weather Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.M.; Huang, X.-Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y. Coauthors. The Weather Research and Forecasting (WRF) Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Am. Meteorl. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Lim, K.-S.S.; Ko, J.; Kim, K.; Lee, G.; Cho, S.-J.; Ahn, K.-D.; Lee, Y.-H. Revision of WDM7 Microphysics Scheme and Evaluation for Precipitating Convection over the Korean Peninsula. Remote Sens. 2021, 13, 3860. [Google Scholar] [CrossRef]
- Yu, X.; Lee, T.-Y. Role of convective parameterization in simulations of heavy precipitation systems at grey-zone resolutions case studies. Asia-Pac. J. Atmos. Sci. 2011, 47, 99–112. [Google Scholar] [CrossRef]
- Li, F.; Song, J.; Li, X. A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan 2013. Nat. Hazards 2018, 92, 647–671. [Google Scholar] [CrossRef]
- On, N.; Kim, H.M.; Kim, S. Effects of Resolution, Cumulus Parameterization Scheme, and Probability Forecasting on Precipitation Forecasts in a High-Resolution Limited-Area Ensemble Prediction System. Asia-Pac. J. Atmos. Sci. 2018, 54, 623–637. [Google Scholar] [CrossRef]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Li, X.; Carey, L.D.; McCaul, E.W.; Coleman, T.A. Regional Comparison of GOES Cloud-Top Properties and Radar Characteristics. Mon. Weather Rev. 2013, 141, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Yuter, S.E.; Houze, R.A., Jr. Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part 2: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Weather Rev. 2013, 123, 1941–1963. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Kain, J.S.; Weiss, S.J.; Xue, M.; Bright, D.R.; Kong, F.; Thomas, K.W.; Levit, J.J.; Coniglio, M.C.; Wandishin, M.S. Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecast. 2010, 25, 263–280. [Google Scholar] [CrossRef]
Case | Case Periods | Maximum CAPE (m2 s−2) | Existence of Low Level Jet (Below 850 hPa) | Characteristics | |
---|---|---|---|---|---|
1 | Meso 1 | 1500 UTC 17 July 2014 0600 UTC 18 July 2014 | Gwang-ju: 1365 (0000 UTC 18 July 2014) | No | Mesoscale precipitation |
2 | Meso 2 | 0200 UTC 1 June 2017 1500 UTC 1 June 2017 | Osan: 1243 (0000 UTC 1 June 2017) | No | |
3 | Synop 1 | 0600 UTC 2 May 2016 0600 UTC 3 May 2016 | Gwang-ju: 97 (0600 UTC 2 May 2016) | Yes | Synoptic scale embedded precipitation |
4 | Synop 2 | 0000 UTC 1 July 2016 0000 UTC 2 July 2016 | Osan: 573 (0600 UTC 1 July 2016) | Yes |
Category | Characteristics |
---|---|
Horizontal resolution | 13.5 km, 4.5 km and 1.5 km (2 nested grid/3 domains) |
# of grids (d01|d02|d03) | 301 × 301 × 60|337 × 364 × 60|640 × 820 × 60 |
Vertical layer information | 60 sigma levels up to 50 hPa |
Microphysics | WDM6 scheme |
Radiation | RRTM long/short wave scheme |
Cumulus parameterization | Kain-Fritsch scheme (domain 3 off) |
Planetary boundary layer | YSU scheme |
Surface | Revised MM5 Monin-Obukhov similarity scheme |
Land surface model | RUC LSM scheme |
Rainrate | 1 mm | 10 mm | |||
---|---|---|---|---|---|
Case | CTRL | DA | CTRL | DA | |
Meso 1 | FSS | 0.180 | 0.328 | 0.052 | 0.235 |
POD | 0.030 | 0.180 | 0 | 0.107 | |
Meso 2 | FSS | 0.144 | 0.278 | 0.081 | 0.194 |
POD | 0.109 | 0.196 | 0.017 | 0.184 | |
Synop 1 | FSS | 0.637 | 0.709 | 0.363 | 0.401 |
POD | 0.481 | 0.549 | 0.269 | 0.284 | |
Synop 2 | FSS | 0.644 | 0.602 | 0.529 | 0.481 |
POD | 0.594 | 0.569 | 0.284 | 0.269 |
Score | Pattern Correlation | ||
---|---|---|---|
Case | CTRL | DA | |
Meso 1 | −0.093 | 0.728 | |
Meso 2 | 0.147 | 0.253 | |
Synop 1 | 0.614 | 0.649 | |
Synop 2 | 0.484 | 0.507 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.-H.; Min, K.-H. Forecast Characteristics of Radar Data Assimilation Based on the Scales of Precipitation Systems. Remote Sens. 2022, 14, 605. https://doi.org/10.3390/rs14030605
Bae J-H, Min K-H. Forecast Characteristics of Radar Data Assimilation Based on the Scales of Precipitation Systems. Remote Sensing. 2022; 14(3):605. https://doi.org/10.3390/rs14030605
Chicago/Turabian StyleBae, Jeong-Ho, and Ki-Hong Min. 2022. "Forecast Characteristics of Radar Data Assimilation Based on the Scales of Precipitation Systems" Remote Sensing 14, no. 3: 605. https://doi.org/10.3390/rs14030605