Crop-Type Classification for Long-Term Modeling: An Integrated Remote Sensing and Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Imagery Acquisition and Processing
2.3. Noise Filtering and Dimensionality Standardization
2.4. Models Development and Evaluation
3. Results
3.1. Pseudo Crop Phenology Curves
3.2. Models Development and Evaluation
3.3. Model Application
4. Discussion
4.1. Pseudo Crop Phenology Curves
4.2. Models Development and Evaluation
4.3. Model Application
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gilmanov, T.G.; Wylie, B.K.; Tieszenb, L.L.; Meyers, T.P.; Barond, V.S.; Bernacchi, C.J.; Billesbach, D.P.; Burba, G.G.; Fischer, M.L.; Glenni, A.J.; et al. CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: Estimates from flux tower measurements. Agric. Ecosyst. Environ. 2013, 164, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Howard, D.M.; Wylie, B.K. Annual crop type classification of the US great plains for 2000 to 2011. Photogramm. Eng. Remote Sens. 2014, 80, 537–549. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Song, X.; Potapov, P.V.; Krylov, A.; King, L.; Bella, C.M.D.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Svoboda, M.; Johnson, D.; Mueller, R.; Tadesse, T.; Wardlow, B.; Brown, J. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteorol. 2016, 218, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Momm, H.G.; Porter, W.S.; Yasarer, L.; ElKadiri, R.; Bingner, R.L.; Aber, J. Crop Conversion Impacts on Runoff and Sediment Loads in the Upper Sunflower River Watershed. Agric. Water Manag. 2019, 217, 399–412. [Google Scholar] [CrossRef]
- Zema, D.A.; Bingner, R.L.; Denisi, P.; Govers, G.; Licciardello, F.; Zimbone, S.M. Evaluation of runoff, peak flow and sediment yield for events simulated by the AnnAGNPS model in a Belgian agricultural watershed. Land Degrad. Dev. 2012, 23, 205–215. [Google Scholar] [CrossRef]
- Bisantino, T.; Bingner, R.L.; Chouaib, W.; Gentile, F.; Liuzzi, G.T. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degrad. Dev. 2013, 26, 340–355. [Google Scholar] [CrossRef]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-time water and sediment-routing model for large basins. J. Hydraulic Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Johnson, D.M.; Mueller, R. The 2009 Cropland Data Layer. Photogramm. Eng. Remote Sens. 2010, 1201–1205. [Google Scholar]
- Alemu, W.G.; Henebry, G.M.; Melesse, A.M. Land Surface Phenologies and Seasonalities in the US Prairie Pothole Region Coupling AMSR Passive Microwave Data with the USDA Cropland Data Layer. Remote Sens. 2019, 11, 2550. [Google Scholar] [CrossRef] [Green Version]
- McNider, R.T.; Handyside, C.; Doty, K.; Ellenburg, W.L.; Cruise, J.F.; Christy, J.R.; Moss, D.; Sharda, V.; Hoogenboom, G.; Caldwell, P. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands. Environ. Model. Softw. 2015, 72, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Stern, A.J.; Doraiswamy, P.; Akhmedov, B. Crop rotation changes in Iowa due to ethanol production. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008. [Google Scholar] [CrossRef]
- Baskaran, L.; Jager, H.I.; Schweizer, P.E.; Srinivasan, R. Progress toward evaluating the sustainability of switchgrass as a bioenergy crop using the SWAT model. Trans. ASABE 2010, 53, 1547–1556. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Sandborn, A.; Willis, P.; Haack, B. Operational Agricultural Flood Monitoring With Sentinel-1 Synthetic Aperture Radar. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valenca, Spain, 22–27 July 2018. [Google Scholar] [CrossRef]
- Torbick, N.; Huang, X.; Ziniti, B.; Johnson, D.; Masek, J.; Reba, M. Fusion of Moderate Resolution Earth Observations for Operational Crop Type Mapping. Remote Sens. 2018, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Brown, J.F.; Miura, T.; Leeuwen, W.J.D.; Reed, B.C. Phenological Classification of the United States: A Geographic Framework for Extending Multi-Sensor Time-Series Data. Remote Sens. 2010, 2, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Wang, R.; Shan, J.; Tadesse, T.; Hayes, M.J.; Li, D. A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2016, 181, 237–250. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated mapping of soybean and corn using phenology. ISPRS J. Photogramm. Remote Sens. 2016, 119, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Tricht, V.T.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D. Using the Landsat archive to map crop cover history across the United States. Remote Sens. Environ. 2019, 232, 111286. [Google Scholar] [CrossRef]
- Vorobiova, N.; Cherov, A. Curve fitting of MODIS NDVI time series in the task of early crops identification by satellite images. Procedia Eng. 2017, 201, 184–195. [Google Scholar] [CrossRef]
- Hao, P.; Zhan, Y.; Wand, L.; Niu, Z.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Wang, P.; Niu, A. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China. PLoS ONE 2015, 10, 1–24. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogram. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A.; Brodley, C.E.; Sthrhler, A.H. Maximizing Land Cover Classification Accuracies Produced by Decision Trees at Continental to Global Scales. IEEE Trans. Geosci. Remote Sens. 1999, 37, 969–977. [Google Scholar] [CrossRef]
- Atzberger, C.; Rembold, F. Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets. Remote Sens. 2013, 5, 1335–1354. [Google Scholar] [CrossRef] [Green Version]
- Abade, N.A.; Júnior, O.A.C.; Guimarães, R.F.; Oliveira, S.N. Comparative Analysis of MODIS Time-Series Classification Using Support Vector Machines and Methods Based upon Distance and Similarity Measures in the Brazilian Cerrado-Caatinga Boundary. Remote Sens. 2015, 7, 12160–12191. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agricul. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- USDA-NASS 2. Field Crops Usual Planting and Harvesting Dates, USDA-NASS Agricultural Handbook Number 628. 2010. Available online: https://usda.library.cornell.edu/concern/publications/vm40xr56k?locale=en (accessed on 5 June 2019).
- USGS-EROS-ESPA. Available online: https://espa.cr.usgs.gov (accessed on 15 February 2018).
- Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, F.G.; Huemmrich, F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Earth Resources Observation And Science (EROS) Center. Landsat Quality Assessment ArcGIS Toolbox; U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Swets, D.; Reed, B.C.; Rowland, J.; Marko, S.E. A weighted least-squares approach to temporal NDVI smoothing. In Proceedings of the From image to information: 1999 ASPRS Annual Conference, Portland, OR, USA, 17–21 May 1999. [Google Scholar]
- Dierckx, P. Curve and Surface Fitting with Splines; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Oliphant, T.E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Millman, K.J.; Aivazis, M. Python for Scientists and Engineers. Comput. Sci. Eng. 2011, 13, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997; ISBN 0-07-115467-1. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: San Francisco, CA, USA, 2016; pp. 486–500. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Ok, A.O.; Akar, O.; Gungor, O. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 2012, 45, 421–432. [Google Scholar] [CrossRef]
- Johnson, D.M. A 5-year Analysis of Crop Phenologies from the United States Heartland. In Proceedings of the 2010 Fall Meeting of American Geophysical Union, San Francisco, CA, USA, 13–17 December 2010. B33C-0413. [Google Scholar]
- United States Draught Monitor. Available online: https://droughtmonitor.unl.edu/Maps/MapArchive.aspx (accessed on 20 June 2019).
- Wallander, S.; Claassen, R.; Nickerson, C. The Ethanol Decade: An Expansion of US Corn Production, 2000–2009. USDA-ERS Economic Information Bulletin; 2011; 79. Available online: https://www.ers.usda.gov/webdocs/publications/44564/6905_eib79.pdf?v=41055 (accessed on 2 June 2019).
- Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [Green Version]
- USDA-NASS. Available online: https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/meta.php (accessed on 15 June 2019).
Year | Path | Scene Acquisition Date, DOY and Percent of Cloud Coverage, (%) * | Total |
---|---|---|---|
1985 | 30 | 11(100), 27(51), 75(39), 123(54), 139(0), 155(46), 171(4), 187(25), 203(0), 219(25), 235(48), 251(100), 267(28), 283(0), 299(3), 315(100), 331(18) | 34 |
31 | 2(100), 18(85), 34(6), 66(88), 82(35), 114(62), 178(100), 194(85), 210(55), 226(1), 242(92), 258(80), 274(0), 290(0), 306(75), 322(1), 338(12) | ||
1990 | 30 | 9(82), 105(8), 121(81), 137(14), 153(94), 169(0), 185(64), 201(98), 217(0), 233(96), 249(82), 265(89), 281(20), 297(0), 313(48), 329(53), 345(11), 361(100) | 32 |
31 | 80(74), 96(0), 112(2), 128(6), 144(77), 160(0), 176(63), 192(100), 224(77), 240(30), 256(39), 272(97), 288(10), 304(6) | ||
1995 | 30 | 23(22), 39(15), 55(91), 71(8), 103(4), 119(90), 135(5), 151(10), 167(0), 183(54), 199(0), 215(23), 231(0), 247(21), 263(93), 279(100), 295(92), 311(63), 327(54), 359(100) | 41 |
31 | 14(2), 30(4), 46(2), 62(18), 78(98), 94(33), 110(96), 142(96), 158(100), 174(40), 190(32), 206(89), 222(12), 238(85), 254(81), 270(0), 286(94), 302(25), 318(82), 334(68), 350(18) | ||
2000 | 30 | 21(100), 37(11), 53(55), 69(82), 85(0), 101(31), 117(88), 133(73), 165(93), 181(3), 197(1), 229(39), 245(100), 261(33), 293(0), 341(100), 357(25) | 28 |
31 | 0(7), 124(6), 140(0), 156(23), 204(8), 220(0), 236(10), 252(0), 268(0), 284(0), 332(0) | ||
2005 | 30 | 2(4), 18(80), 34(71), 50(35), 66(53), 82(70), 98(23), 114(9), 130(91), 146(83), 162(100), 178(81), 194(0), 210(0), 226(10), 242(0), 258(5), 274(2), 290(24), 306(30), 322(93) | 42 |
31 | 9(10), 25(1), 41(59), 57(82), 73(73), 89(72), 105(39), 121(96), 137(82), 153(59), 169(1), 185(35), 201(42), 217(0), 233(1), 249(53), 265(0), 281(14), 297(0), 313(26), 329(78) |
Testing | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | ||||||||||||||
Training | 2000 | c | w | c | f | o | s | c | w | b | f | o | s | ||
c | 130 | 9 | 34 | 6 | 1 | 2 | c | 117 | 0 | 99 | 2 | 0 | 2 | ||
w | 5 | 488 | 15 | 26 | 0 | 0 | w | 2 | 349 | 10 | 13 | 13 | 0 | ||
b | 35 | 24 | 224 | 8 | 1 | 0 | b | 34 | 1 | 607 | 15 | 8 | 11 | ||
f | 5 | 29 | 8 | 126 | 3 | 1 | f | 64 | 16 | 29 | 132 | 17 | 1 | ||
o | 5 | 33 | 12 | 12 | 6 | 0 | o | 0 | 0 | 7 | 1 | 1 | 0 | ||
s | 10 | 3 | 30 | 2 | 0 | 2 | s | 0 | 0 | 0 | 0 | 0 | 0 | ||
k = 0.66 and OA = 75.37% | k = 0.68 and OA = 77.66% | ||||||||||||||
2000 | 2005 | ||||||||||||||
2005 | c | w | b | f | o | s | c | w | b | f | o | s | |||
c | 72 | 27 | 75 | 8 | 0 | 0 | c | 199 | 1 | 14 | 6 | 0 | 0 | ||
w | 0 | 517 | 8 | 9 | 0 | 0 | w | 0 | 355 | 6 | 16 | 0 | 0 | ||
b | 16 | 40 | 231 | 5 | 0 | 0 | b | 9 | 2 | 642 | 22 | 1 | 0 | ||
f | 4 | 109 | 7 | 52 | 0 | 0 | f | 4 | 15 | 25 | 215 | 0 | 0 | ||
o | 3 | 36 | 17 | 12 | 0 | 0 | o | 0 | 0 | 7 | 1 | 1 | 0 | ||
s | 4 | 5 | 37 | 1 | 0 | 0 | s | 5 | 0 | 7 | 0 | 0 | 0 | ||
k = 0.52 and OA = 67.30% | k = 0.87 and OA = 90.92% | ||||||||||||||
2000–2005 Combined | |||||||||||||||
2000-2005 Combined | c | w | b | f | o | s | c = corn/maize | ||||||||
c | 117 | 0 | 7 | 5 | 0 | 0 | w = spring wheat | ||||||||
w | 1 | 232 | 6 | 19 | 0 | 0 | b = soybeans | ||||||||
b | 4 | 0 | 377 | 27 | 2 | 0 | f = fallow, idle, grassland, hay | ||||||||
f | 1 | 7 | 8 | 146 | 0 | 0 | o = other crops | ||||||||
o | 0 | 0 | 0 | 0 | 0 | 0 | s = sunflower | ||||||||
s | 5 | 0 | 4 | 0 | 0 | 0 | k = kappa statistic | ||||||||
k = 0.86 and OA = 90.01% | OA = overall accuracy |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momm, H.G.; ElKadiri, R.; Porter, W. Crop-Type Classification for Long-Term Modeling: An Integrated Remote Sensing and Machine Learning Approach. Remote Sens. 2020, 12, 449. https://doi.org/10.3390/rs12030449
Momm HG, ElKadiri R, Porter W. Crop-Type Classification for Long-Term Modeling: An Integrated Remote Sensing and Machine Learning Approach. Remote Sensing. 2020; 12(3):449. https://doi.org/10.3390/rs12030449
Chicago/Turabian StyleMomm, Henrique G., Racha ElKadiri, and Wesley Porter. 2020. "Crop-Type Classification for Long-Term Modeling: An Integrated Remote Sensing and Machine Learning Approach" Remote Sensing 12, no. 3: 449. https://doi.org/10.3390/rs12030449
APA StyleMomm, H. G., ElKadiri, R., & Porter, W. (2020). Crop-Type Classification for Long-Term Modeling: An Integrated Remote Sensing and Machine Learning Approach. Remote Sensing, 12(3), 449. https://doi.org/10.3390/rs12030449