Random Forest Variable Importance Spectral Indices Scheme for Burnt Forest Recovery Monitoring—Multilevel RF-VIMP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Satellite Data
2.2. Methods
2.2.1. Overview
2.2.2. Multilevel RF-VIMP System
2.2.3. Spectral Index Acquisitions
3. Results
4. Discussion
4.1. Biases in the Importance Value Calculated from the Random Forest Algorithm
4.2. The Random Forest Algorithm vs. Multicollinearity and Spatial Autocorrelation
4.3. Variable Importances and Forest Succession
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Qu, J.; Hao, X.; Liu, Y.; Riebau, A.; Yi, H.; Qin, X. Remote Sensing Applications of Wildland Fire and Air Quality in China. Dev. Envi. Sci. 2016, 8, 277–288. [Google Scholar]
- Tian, X.; McRae, D.J.; Jin, J.; Shu, L.; Zhao, F.; Wang, M. Changes of Forest Fire Danger and the Evaluation of the FWI System Application in the Daxing’ anling Region. Sci. Silv. Sin. 2010, 46, 127–132. [Google Scholar]
- Chen, W.; Sakai, T.; Moriya, K.; Koyama, L.; Cao, C. Extraction of burned forest area in the Greater Hinggan Mountain of China based on Landsat TM data. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGRASS), Melbourne, Australia, 21–26 July 2013. [Google Scholar]
- Santis, D.A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar] [CrossRef]
- Yi, K.; Tani, H.; Zhang, J.; Guo, M.; Wang, X.; Zhong, G. Long-term satellite detection of post-fire vegetation trends in boreal forests of China. Remote Sens. 2013, 5, 6938–6957. [Google Scholar] [CrossRef]
- Liu, Z. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China. Sci. Rep. 2016, 6, 37572. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.C. NDWI A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Schroeder, T.; Schleeweis, K.; Moisen, G.; Toney, C.; Cohen, W.; Freeman, E.; Yang, Z.; Huang, C. Testing a Landsat-based approach for mapping disturbance causality in U.S. forests. Remote Sens. Environ. 2017, 195, 230–243. [Google Scholar] [CrossRef]
- Han, J.; Shen, Z.; Ying, L.; Li, G.; Chen, A. Early post-fire regeneration of a fire-prone subtropical mixed Yunnan pine forest in Southwest China. For. Ecol. Manag. 2015, 356, 31–40. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. Bioinformatics 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. Bioinformatics 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.; Kaufman, Y.; Merzlyak, M. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Sripada, R.; Heiniger, R.; White, J.; Meijier, A. Aerial color infrared photography for determining early-season in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Mcfeeters, S. The use of normalized difference water index (NDWI) in the delineation of open water feature. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Thiam, A. Geographic Information Systems and Remote Sensing Methods for Assessing and Monitoring Land Degradation in the Sahel: The Case of Southern Mauritania. Ph.D. Thesis, Clark University, Worcaster, MA, USA, 1997. [Google Scholar]
- Gitelson, A.; Kaufman, Y.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Strobl, C.; Hothorn, T.; Zeileis, A. Party on! A new, conditional variable-importance measure for random forests available in the party package. R J. 2009, 1, 14–17. [Google Scholar]
- Hothorn, T.; Hornik, K.; Zeileis, A. Party: A Laboratory for Recursive Part(y)itioning. 2006. Available online: http://CRAN.R-project.org (accessed on 19 April 2018).
- Kleinbaum, D.G.; Kupper, L.L.; Muller, K.E. Applied Regression Analysis and Other Multivariable Methods; PWS-Kent Publishing Company: Boston, MA, USA, 1988. [Google Scholar]
- Myers, R.H. Classical and Modern Regression with Applications; Duxbury Press: Duxbury, MA, USA, 1986. [Google Scholar]
- Kozak, A. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can. J. For. Res. 1997, 27, 619–629. [Google Scholar] [CrossRef]
- Sokal, R.R.; Oden, N.L. Spatial autocorrelation in biology 1. Methodology. Biol. J. Linn. Soc. 1978, 10, 199–228. [Google Scholar] [CrossRef]
- Sokal, R.R.; Thomson, J.D. Applications of spatial autocorrelation in ecology. In Developments in Numerical Ecology; NATO ASI Series; Legendre, P., Legendre, L., Eds.; Springer: Berlin, Germany, 1987; p. G14. [Google Scholar]
- Klinkenberg, B. Geob 479—GIScience in Research. Available online: http://ibis.geog.ubc.ca/courses/geob479/notes/spatial_analysis/spatial_autocorrelation.htm (accessed on 19 April 2018).
- Mascaro, J.; Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Martin, R.E.; Anderson, C.; Higgins, M.; Chadwick, K.D. A tale of two “forests”: Random forest machine learning aids tropical forest carbon mapping. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D. Spatial Autocorrelation: A Primer; Association of American, Geographers Resource Publication: Washington, DC, USA, 1987. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Application in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Rao, M.; George, L.A.; Shandas, V.; Rosenstiel, T.N. Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health. Int. J. Environ. Res. Public Health 2017, 14, 750. [Google Scholar] [CrossRef] [PubMed]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comp. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Bax, V.; Francesconi, W. Environmental predictors of forest change: An analysis of natural predisposition to deforestation in the tropical Andes region, Peru. Appl. Geogr. 2018, 91, 99–110. [Google Scholar] [CrossRef]
- Evans, J.S.; Murphy, M.A.; Holden, Z.A.; Cushman, S.A. Modeling species distribution and change using Random Forests. In Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications; Drew, C.A., Wiersma, Y.F., Huettmann, F., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple regression and random forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Sánchez-Cuervo, A.M.; Aide, T.M. Consequences of the armed conflict, forced human displacement, and land abandonment on forest cover change in Colombia: A multi-scaled analysis. Ecosystems 2013, 16, 1052–1070. [Google Scholar] [CrossRef]
- Meng, R.; Wu, J.; Schwager, K.; Zhao, F.; Dennison, P.; Cook, B.; Brewster, K.; Green, T.; Serbin, S. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 2017, 191, 95–109. [Google Scholar] [CrossRef]
- García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic Mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Masemola, C. Remote Sensing of Leaf Area Index in Savannah Grass Using Inversion of Radiative Transfer Model on Landsat 8 Imagery: Case Study Mpumalanga, South Africa. Ph.D. Thesis, University of South Africa, Pretoria, South Africa, 2015. [Google Scholar]
- Nioti, F.; Xystrakis, F.; Koutsias, N.; Dimopoulos, P. A Remote Sensing and GIS Approach to Study the Long-Term Vegetation Recovery of a Fire-Affected Pine Forest in Southern Greece. Remote Sens. 2015, 7, 7712–7731. [Google Scholar] [CrossRef]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. Int. J. Wildland Fire 2005, 14, 189–198. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Z.; Ohlen, D.; Huang, C.; Shi, H. Use of multiple spectral indices to estimate burn severity in the black hills of South Dakota. In Proceedings of the Pecora 17—The Future of Land Imaging Going Operational, Denver, CO, USA, 18–20 November 2008. [Google Scholar]
- Cuevas-gonzalez, M.; Gerard, F.; Balzter, H.; Riano, D. Analysing forest recovery after wildfire disturbance in boreal forest regions: A review. Remote Sens. 2014, 6, 470–520. [Google Scholar]
- Ollinger, S. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
Abbr. | Description | Equations |
---|---|---|
ARVI | Atmospherically resistant vegetation index | |
CTVI | Corrected transformed vegetation index | |
DVI | Difference vegetation index | |
EVI | Enhanced vegetation index [16] | |
EVI2 | Two-band enhanced vegetation index [17] | |
GARI | Green atmospherically resilient index [18] | |
GDVI | Green difference vegetation index | |
GEMI | Global environmental monitoring index | |
GNDVI | Green normalized difference vegetation index | |
GRVI | Green ratio vegetation index [19] | |
GSAVI | Green soil-adjusted vegetation index [19] | |
MNDWI | Modified normalized difference water index | |
MSAVI | Modified soil-adjusted vegetation index | |
NBRI | Normalized burn ratio index [3] | |
NDVI | Normalized difference vegetation index | |
NDWI | Normalized difference water index [20] | |
NDWI2 | Normalized difference water index 2 [7] | |
NG | Normalized green | |
NNIR | Normalized near-infrared | |
NR | Normalized red | |
NRVI | Normalized ratio vegetation index | . |
OSAVI | Optimized soil-adjusted vegetation index [21] | |
RVI | Ratio vegetation index (simple ratio) | |
SAVI | Soil-adjusted vegetation index | |
TCB | Tasseled cap transformation brightness [22] | |
TCG | Tasseled cap transformation greenness [22] | |
TCW | Tasseled cap transformation wetness [22] | |
TTVI | Thiam’s transformed vegetation index [23] | |
VARI | Visible atmospherically resistant index [24] | |
VIgreen | Vegetation index (green) [24] |
Rank | Fire Year | 1 Year after | 4 Years after | 14 Years after | 16 Years after | 20 Years after | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MDA | MDG | MDA | MDG | MDA | MDG | MDA | MDG | MDA | MDG | MDA | MDG | |
1 | SWIR2 | SWIR2 | NBRI | NBRI | TCW | SWIR 2 | SWIR 1 | SWIR 1 | Red | SWIR 1 | TCB | TCB |
2 | EVI2 | EVI2 | NDWI2 | SWIR2 | NDWI2 | TCW | TCB | TCW | Green | Red | NIR | NIR |
3 | NDWI | NDWI | SWIR2 | NDWI2 | SWIR 2 | NDWI2 | TCW | TCB | TCB | TCW | DVI | SWIR 1 |
4 | SAVI | GRVI | NNIR | NNIR | NBRI | NBRI | NIR | SWIR 2 | SWIR 1 | Green | GEMI | GEMI |
5 | GRVI | SAVI | NRVI | EVI2 | Blue | SWIR 1 | GEMI | NIR | TCW | SWIR 2 | EVI | EVI |
6 | NIR | NIR | TCW | NRVI | SWIR 1 | Red | DVI | MNDWI | NIR | Blue | GDVI | DVI |
7 | CTVI | CTVI | ARVI | TTVI | ARVI | ARVI | SWIR 2 | GDVI | NRVI | TCB | SWIR 1 | GDVI |
8 | GEMI | GEMI | TTVI | NDVI | Red | Green | NDWI2 | GEMI | TTVI | ARVI | CTVI | Green |
9 | ARVI | ARVI | NDVI | RVI | Green | Blue | GDVI | NDWI2 | NDVI | Vig | SAVI | Blue |
10 | NBRI | NBRI | RVI | NR | GNDVI | TTVI | CTVI | DVI | RVI | NIR | Green | CTVI |
Indices | 1 Year after | 4 Years after | 14 Years after | 16 Years after | 20 Years after | GRV | Ranks * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R * | K * | R | K | R | K | R | K | R | K | |||
SWIR2 | 2 | 0.96 | 1 | 0.99 | 2 | 0.86 | 2 | 0.68 | 6 | 0.50 | 2.6 | 1 |
SWIR1 | 33 | 0.66 | 4 | 0.97 | 1 | 0.96 | 1 | 0.81 | 1 | 0.73 | 8 | 2 |
TCW | 18 | 0.88 | 3 | 0.99 | 4 | 0.83 | 7 | 0.43 | 10 | 0.40 | 8.4 | 3 |
Red | 16 | 0.91 | 2 | 0.99 | 6 | 0.70 | 3 | 0.62 | 19 | 0.28 | 9.2 | 4 |
NDWI2 | 19 | 0.87 | 10 | 0.92 | 5 | 0.75 | 5 | 0.51 | 7 | 0.43 | 9.2 | 5 |
TCB | 36 | 0.29 | 6 | 0.96 | 3 | 0.83 | 4 | 0.53 | 2 | 0.66 | 10.2 | 6 |
NBRI | 3 | 0.94 | 7 | 0.96 | 10 | 0.46 | 10 | 0.31 | 21 | 0.25 | 10.2 | 7 |
NIR | 32 | 0.71 | 17 | 0.90 | 7 | 0.61 | 6 | 0.48 | 4 | 0.51 | 13.2 | 8 |
NDWI | 9 | 0.93 | 11 | 0.91 | 17 | 0.23 | 13 | 0.29 | 28 | 0.19 | 15.6 | 9 |
ARVI | 1 | 0.96 | 8 | 0.93 | 23 | 0.20 | 11 | 0.30 | 36 | 0.08 | 15.8 | 10 |
NRVI | 8 | 0.93 | 12 | 0.91 | 18 | 0.23 | 15 | 0.29 | 26 | 0.20 | 15.8 | 11 |
RVI | 7 | 0.93 | 13 | 0.91 | 16 | 0.24 | 12 | 0.30 | 31 | 0.18 | 15.8 | 12 |
MNDWI | 34 | 0.49 | 27 | 0.65 | 8 | 0.57 | 8 | 0.37 | 3 | 0.57 | 16 | 13 |
Green | 6 | 0.93 | 14 | 0.91 | 19 | 0.23 | 14 | 0.29 | 32 | 0.18 | 17 | 14 |
TTVI | 14 | 0.92 | 5 | 0.97 | 11 | 0.35 | 22 | 0.23 | 34 | 0.16 | 17.2 | 15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonprong, S.; Cao, C.; Chen, W.; Bao, S. Random Forest Variable Importance Spectral Indices Scheme for Burnt Forest Recovery Monitoring—Multilevel RF-VIMP. Remote Sens. 2018, 10, 807. https://doi.org/10.3390/rs10060807
Boonprong S, Cao C, Chen W, Bao S. Random Forest Variable Importance Spectral Indices Scheme for Burnt Forest Recovery Monitoring—Multilevel RF-VIMP. Remote Sensing. 2018; 10(6):807. https://doi.org/10.3390/rs10060807
Chicago/Turabian StyleBoonprong, Sornkitja, Chunxiang Cao, Wei Chen, and Shanning Bao. 2018. "Random Forest Variable Importance Spectral Indices Scheme for Burnt Forest Recovery Monitoring—Multilevel RF-VIMP" Remote Sensing 10, no. 6: 807. https://doi.org/10.3390/rs10060807