Spatiotemporal Evolution Analysis of PM2.5 Concentrations in Central China Using the Random Forest Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Data Preprocessing
2.3.2. Multiple Linear Regression
2.3.3. Back Propagation Neural Network
2.3.4. Random Forest
2.3.5. Model Construction
2.3.6. Evaluation Metrics
- (1)
- Model Accuracy Metrics
- (2)
- Key Factor Analysis
3. Results and Analysis
3.1. Spatial Analysis of the Explanatory Variables
3.2. Analysis of the Factors Influencing the PM2.5 Concentrations
3.3. Spatiotemporal Analysis of the PM2.5 Concentrations
3.3.1. Temporal Variations in the PM2.5 Concentrations
3.3.2. Spatial Analysis of the PM2.5 Concentrations
4. Conclusions and Discussion
4.1. Conclusions
4.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, H.J.; Zhou, Y.; Hu, X.F.; Zhang, L.; Peng, Y.Z.; Cai, X.X. A PM2.5 prediction model based on deep learning and random forest. Natl. Remote Sens. Bull. 2023, 2, 430–440. [Google Scholar]
- Kang, X.L.; Zhang, W.H.; Liu, Y.P.; Gu, X.F.; Yu, T.; Zhang, L.L.; Xu, H.K. PM2.5 remote sensing retrieval and change analysis in Beijing–Tianjin–Hebei region based on random forest model. Remote Sens. Technol. Appl. 2022, 2, 424–435. [Google Scholar]
- Zheng, J. Study on Aerosol Optical Thickness and Particle Concentration in Xi’an Based on MODIS Inversion. Master’s Thesis, Chang’an University, Xi’an, China, 2019. [Google Scholar]
- Liu, Z. Aerosol Optical Properties Study Based on Ground Observation. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2020. [Google Scholar]
- Liu, J.; Li, P.F. Research of characteristics of temporal and spatial variation and the influence factors of PM2.5 in Hanzhong city. J. Shaanxi Univ. Technol. (Nat. Sci. Ed.) 2023, 3, 88–92. [Google Scholar]
- Xie, Y.; Dai, H.C.; Zhang, Y.X.; Wu, Y.Z.; Tatsuya, H.; Toshihiko, M. Comparison of health and economic impacts of PM2.5 and ozone pollution in China. Environ. Int. 2019, 130, 104881. [Google Scholar] [CrossRef] [PubMed]
- Al–Kindi, S.G.; Brook, R.D.; Biswal, S.; Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 2020, 10, 656–672. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.Y.; Ye, C.; Wang, X.M.; Lu, D.B.; Xu, J.H.; Yang, H.Q. Global distribution and evolvement of urbanization and PM2.5 (1998–2015). Atmos. Environ. 2018, 182, 171–178. [Google Scholar] [CrossRef]
- Matus, K.; Nam, K.M.; Selin, N.E.; Lamsal, L.N.; Reilly, J.M.; Paltsev, S. Health damages from air pollution in China. Glob. Environ. Change 2012, 1, 55–66. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, J.; Liao, H.; Yang, Y.; Yue, X. Meteorological influences on PM2.5 and O3 trends and associated health burden since China’s clean air actions. Sci. Total Environ. 2020, 744, 140837. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, R.J.; Chen, Y.; Dong, X.L.; Zhu, J.F.; Liu, C.; Donkelaar, A.V.; Martin, R.; Li, H.C.; Kan, H.; et al. The prospective effects of long–term exposure to ambient PM2.5 and constituents on mortality in rural East China. Chemosphere 2021, 280, 130740. [Google Scholar] [CrossRef]
- Daryanoosh, S.M.; Goudarzi, G.; Mohammadi, M.R.; Armin, H.; Khaniabadi, Y.O.; Sadeghi, S. Exposure to particulate matter and its health impacts an AirQ approach. Arch. Hyg. Sci. 2017, 1, 88–95. [Google Scholar] [CrossRef]
- Ye, W.F.; Ma, Z.Y.; Ha, X.Z. Spatial–temporal patterns of PM2.5 concentrations for 338 Chinese cities. Sci. Total Environ. 2018, 631, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Lu, P.L.; Duan, L.F.; Li, Z.L.; Wang, F.W.; Zhai, C.Z. Spatio–temporal characteristics and influencing factors of PM2.5 in Cheng–Yu district. Environ. Impact Assess. 2021, 4, 84–90. [Google Scholar]
- Fang, D.; Wang, Q.G.; Li, H.M.; Yu, Y.Y.; Lu, Y.; Qian, X. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China. Sci. Total Environ. 2016, 569–570, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Q.; Yao, J.Q.; Yang, R.; Zhang, S.W.; Zhao, W.J. Spatio–temporal variations in PM2. 5 and its influencing factors in the Yangtze River delta urban agglomeration. Environ. Sci. 2023, 44, 5325–5334. [Google Scholar]
- Wang, J.K.; Zhang, H.D.; Gui, H.L.; Rao, X.Q.; Zhang, B.H. Relationship between atmospheric visibility and PM2.5 concentrations and distributions. Environ. Sci. 2019, 7, 2985–2993. [Google Scholar]
- Chen, J.; Zhao, C.S. A review of influence factors and calculation of atmospheric low visibility. Adv. Meteorol. Sci. Technol. 2014, 4, 44–51. [Google Scholar]
- Khanna, I.; Khare, M.; Gargava, P.; Khan, A.A. Effect of PM2.5 chemical constituents on atmospheric visibility impairment. J. Air Waste Manag. Assoc. 2018, 5, 430–437. [Google Scholar] [CrossRef]
- Li, Y.H.; Wang, Y.; Yi, Q.C.; Chen, L.F. The study on air quality change of Nanchang city from 2004 to 2015 years based on satellite remote sensing MODIS data. J. Jiangxi Norm. Univ. (Nat. Sci.) 2019, 2, 214–220. [Google Scholar]
- Lu, J.M.; Zeng, S.P.; Zeng, J.; Wang, S.; Song, Y.Z. High resolution simulation of temporal and spatial variation of PM2.5 concentration based on random forest—A case study of central plains urban agglomeration core area. China Environ. Sci. 2023, 7, 3299–3311. [Google Scholar]
- Agibayeva, A.; Khalikhan, R.; Guney, M.; Karaca, F.; Torezhan, A.; Avcu, E. An air quality modeling and disability–adjusted life years (DALY) risk assessment case study: Comparing statistical and machine learning approaches for PM2.5 forecasting. Sustainability 2022, 14, 16641. [Google Scholar] [CrossRef]
- Hu, X.F.; Belle, J.H.; Meng, X.; Wildani, A.; Waller, L.A.; Strickland, M.J.; Liu, Y. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach. Environ. Sci. Technol. 2017, 12, 6936–6944. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Feng, J.Y.; Lv, S.Q.; Shi, W. PM2.5 concentration prediction model based on random forest regression analysis. Telecommun. Sci. 2017, 7, 66–75. [Google Scholar]
- Shi, T.T.; Wang, S.; Yang, L.J.; Chen, W.Q.; Wang, Y.; Gao, J.J. The spatial–temporal change of PM2.5 concentration and its relationship with landscape pattern in East China. Remote Sens. Technol. Appl. 2024, 2, 435–446. [Google Scholar]
- Xia, X.S.; Chen, J.J.; Wang, J.J.; Cheng, X.F. PM2. 5 concentration influencing factors in China based on the random forest model. Environ. Sci. 2020, 5, 2057–2065. [Google Scholar]
- Jin, Y.P.; Peng, J.; Ling, M.; Zhang, B. Temporal and spatial variation characteristics of PM2.5 mass concentration and its influence factors in Anhui Province. J. Heilongjiang Inst. Technol. 2023, 1, 14–20. [Google Scholar]
- Lei, T.M.T.; Ng, S.C.W.; Siu, S.W.I. Application of ANN, XGBoost, and other ML methods to forecast air quality in Macau. Sustainability 2023, 15, 5341. [Google Scholar] [CrossRef]
- Su, Z.; Lin, L.; Xu, Z.; Chen, Y.; Yang, L.; Hu, H.; Lin, Z.; Wei, S.; Luo, S. Modeling the effects of drivers on PM2.5 in the Yangtze River delta with geographically weighted random forest. Remote Sens. 2023, 15, 3826. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, B.; Wang, W.; Zhang, Z.; Qiu, W. Assessing the impact of straw burning on PM2.5 using explainable machine learning: A case study in Heilongjiang Province, China. Sustainability 2024, 16, 7315. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration Giovanni (NASA Giovanni). Available online: https://giovanni.gsfc.nasa.gov (accessed on 4 August 2023).
- Atmospheric Composition Analysis Group. Washington University in St. Louis (WUSTL ACAG). Available online: https://sites.wustl.edu/acag/datasets/surface-pm2-5 (accessed on 14 July 2023).
- Wang, C.; Kan, A.K.; Zeng, Y.L.; Li, G.Q.; Wang, M.; Ci, R. Population distribution pattern and influencing factors in Tibet based on random forest model. Acta Geogr. Sin. 2019, 4, 664–680. [Google Scholar]
- Wang, P.; Zhao, X.Y.; Song, K. Prediction of PM2.5 concentration in Yangtze River delta based on random forest algorithm. Environ. Monit. China 2021, 5, 21–31. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
Explanatory Variables | Data Name | Spatial Resolution |
---|---|---|
AOD | GIOVANNI-g4.timeAvgMap.MOD08_D3_6_1_Aerosol_Optical_Depth_Land_Ocean_Mean.20190101-20191231.72E_17N_146E_57N | 1° |
DEM | dem_1km | 1 km |
WS | wnd_2019_01-wnd_2019_12 | 1 km |
GDP | gdp2019 | 1 km |
NDVI | ndvi201901-ndvi201912 | 1 km |
PRE | pre_2019.nc | 1 km |
POP | pop2019 | 1 km |
TEM | TEM | 0.5° × 0.625° |
Method | ||
---|---|---|
MLR | 0.7992 | 4.4564 |
BPNN | 0.8757 | 3.5109 |
RF | 0.9407 | 2.5168 |
Influencing Factors | AOD | DEM | WS | GDP | NDVI | PRE | POP | TEM |
---|---|---|---|---|---|---|---|---|
Correlation coefficients | 0.6961 | −0.4100 | 0.1513 | 0.2074 | −0.4304 | −0.5665 | 0.3503 | 0.0927 |
Partial correlation coefficients | 0.4088 | −0.2211 | 0.0345 | −0.1383 | −0.1984 | −0.5797 | 0.1957 | 0.1143 |
Year Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Anhui | 52.67 | 53.30 | 48.74 | 54.89 | 56.55 | 49.87 | 45.64 | 46.86 | 40.72 | 39.83 | 34.94 | 32.85 |
Henan | 64.29 | 71.26 | 66.85 | 72.01 | 61.50 | 63.67 | 57.18 | 53.98 | 49.56 | 47.76 | 43.13 | 38.36 |
Hubei | 53.02 | 59.11 | 53.56 | 57.45 | 51.78 | 48.95 | 42.41 | 40.23 | 36.10 | 36.43 | 30.63 | 29.98 |
Hunan | 46.97 | 54.02 | 53.74 | 50.47 | 51.66 | 44.36 | 39.64 | 38.06 | 32.75 | 33.36 | 28.61 | 28.67 |
Jiangxi | 38.95 | 43.97 | 43.85 | 41.67 | 42.71 | 35.59 | 34.45 | 36.34 | 29.17 | 28.26 | 27.48 | 23.95 |
Shanxi | 48.70 | 54.75 | 50.37 | 49.15 | 46.02 | 43.56 | 43.60 | 44.32 | 39.17 | 36.63 | 34.16 | 33.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, G.; Zhu, Y.; Zhang, J. Spatiotemporal Evolution Analysis of PM2.5 Concentrations in Central China Using the Random Forest Algorithm. Sustainability 2024, 16, 8613. https://doi.org/10.3390/su16198613
Fang G, Zhu Y, Zhang J. Spatiotemporal Evolution Analysis of PM2.5 Concentrations in Central China Using the Random Forest Algorithm. Sustainability. 2024; 16(19):8613. https://doi.org/10.3390/su16198613
Chicago/Turabian StyleFang, Gang, Yin Zhu, and Junnan Zhang. 2024. "Spatiotemporal Evolution Analysis of PM2.5 Concentrations in Central China Using the Random Forest Algorithm" Sustainability 16, no. 19: 8613. https://doi.org/10.3390/su16198613