Estimating Sludge Deposition on the Heat Exchanger in the Digester of a Biogas Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject of This Research
2.2. Model of Heat Transfer in the Heat Exchanger
2.2.1. Determining the Sludge Layer Thickness: One-Dimensional Approach
2.2.2. Determining the Sludge Layer Thickness: Two-Dimensional Approach
2.2.3. Overall Heat Transfer Coefficient
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | inner surface of the pipe |
cps | specific heat capacity of the substrate (J/(kg K)) |
cpw | specific heat capacity of the heating medium (water) (J/kg/K) |
Cn | coefficient (real number) |
d | diameter (m) |
Dn | coefficient (real number) |
hi | internal convective heat transfer coefficient (W/(m2 K) |
ho | external convective heat transfer coefficient (W/(m2 K) |
kp | thermal conductivity of the steel pipe (W/(m K)) |
ksl | thermal conductivity of the sludge (W/(m K)) |
ks | thermal conductivity of the substrate (W/(m K)) |
kw | thermal conductivity of the heating medium (water) (W/(m K)) |
L | length of heat exchanger in a single loop (m) |
m | mass flow (kg/s) |
n | index (nonnegative integer) |
N | number of basis functions |
Nu | Nusselt number |
Pr | Prandtl number |
q | heat flux density (W/m2) |
Q | total heat flux (W) |
r | radius, radial coordinate (m) |
Re | Reynolds number |
R2 | coefficient of determination |
s | sludge thickness (m or mm) |
t | time (day) |
Ta | substrate temperature (°C) |
Tp | pipe temperature (°C) |
Tsl | sludge temperature (°C) |
Tw | water temperature (°C) |
Tw,i | average temperature at the inlet to the heat exchanger (°C) |
Tw,o | average temperature at the outlet from the heat exchanger (°C) |
U | overall heat transfer coefficient (W/(m2 K)) |
Vn(1) | 1st kind basis function |
Vn(2) | 2nd kind basis function |
vs | substrate velocity (m/s) |
z | axial coordinate (m) |
Greek symbols | |
μs | dynamic viscosity coefficient of the substrate (kg/(m s)) |
μw | dynamic viscosity coefficient of the heating medium (water) (kg/(m s)) |
ρs | substrate density (kg/m3) |
Φ | functional |
References
- Ouedraogo, N.I.G.; Konaté, Y.; Sawadogo, B.; Beré, E.; Sodré, S.; Karambiri, H. Characterization and Methanogenic Potential Evaluation of Faecal Sludge: Case of the Kossodo Biogas Plant in Ouagadougou. Sustainability 2023, 15, 16401. [Google Scholar] [CrossRef]
- Asensio-Ramos, M.; Melián, G.V.; Padrón, E.; Hernández, P.A.; Pérez, N.M.; Peraza Cano, J.L. Tracer Gas Method Evaluation for Assessing the Energy Potential of Biogas from Chicken Farms in the Canary Islands. Sustainability 2024, 16, 4168. [Google Scholar] [CrossRef]
- Ferreira, J.; Santos, L.; Ferreira, M.; Ferreira, A.; Domingos, I. Environmental Assessment of Pig Manure Treatment Systems through Life Cycle Assessment: A Mini-Review. Sustainability 2024, 16, 3521. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kazimierowicz, J.; Walery, M. Aquatic Macrophyte Biomass Periodically Harvested Form Shipping Routes and Drainage Systems in a Selected Region of Poland as a Substrate for Biogas Production. Appl. Sci. 2023, 13, 4184. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A.; Wichtmann, W.; Zając, G.; Banaszuk, P. Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production. Energies 2023, 16, 695. [Google Scholar] [CrossRef]
- Meisterl, K.; Sastre, S.; Puig-Ventosa, I.; Chifari, R.; Martínez Sánchez, L.; Chochois, L.; Fiorentino, G.; Zucaro, A. Circular Bioeconomy in the Metropolitan Area of Barcelona: Policy Recommendations to Optimize Biowaste Management. Sustainability 2024, 16, 1208. [Google Scholar] [CrossRef]
- Arasto, A.; Chiaramonti, D.; Kiviluoma, J.; van den Heuvel, E.; Waldheim, L.; Maniatis, K.; Sipilä, K. Bioenergy’s Role in Balancing the Electricity Grid and Providing Storage Options—An EU Perspective; Task 41P6; IEA Bioenergy: Paris, France, 2017; Volume 2017. [Google Scholar]
- Gadirli, G.; Pilarska, A.A.; Dach, J.; Pilarski, K.; Kolasa-Więcek, A.; Borowiak, K. Fundamentals, Operation and Global Prospects for the Development of Biogas Plants—A Review. Energies 2024, 17, 568. [Google Scholar] [CrossRef]
- Uzodinma, E.O.U.; Ofoefule, A.U.; Eze, J.I.; Onwuka, N.D. Optimum Mesophilic Temperature of Biogas Production from Blends of Agro-Based Wastes. Trends Appl. Sci. Res. 2007, 2, 39–44. [Google Scholar]
- Wang, S.; Ma, F.; Ma, W.; Wang, P.; Zhao, G.; Lu, X. Influence of Temperature on Biogas Production Efficiency and Microbial Community in a Two-Phase Anaerobic Digestion System. Water 2019, 11, 133. [Google Scholar] [CrossRef]
- Teleszewski, T.J.; Żukowski, M. Analysis of Heat Loss of a Biogas Anaerobic Digester in Weather Conditions in Poland. J. Ecol. Eng. 2018, 19, 242–250. [Google Scholar] [CrossRef]
- Teleszewski, T.; Żukowski, M. The Influence of Sludge on Thermal Performance of Heat Exchanger Tubes Inside in an Anaerobic Digester. Annu. Set Environ. Prot. 2018, 20, 763–779. [Google Scholar]
- Makamure, F.; Mukumba, P.; Makaka, G. An analysis of bio-digester substrate heating methods: A review. Renew. Sustain. Energy Rev. 2021, 137, 110432. [Google Scholar] [CrossRef]
- Wystalska, K. Chapter 5, Creation of a systematic, descriptive review of the main sewage sludge biowaste processing technologies. In Environmental Safety of Biowaste in the Circural Economy; Neczaj, E., Grosser, A., Eds.; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2022; pp. 91–117. [Google Scholar]
- Berce, J.; Zupančič, M.; Može, M.; Golobič, I. A Review of Crystallization Fouling in Heat Exchangers. Processes 2021, 9, 1356. [Google Scholar] [CrossRef]
- Rehman, O.u.; Ramasamy, M.G.; Rozali, N.E.M.; Mahadzir, S.; Ghumman, A.S.M.; Qureshi, A.H. Modeling Strategies for Crude Oil-Induced Fouling in Heat Ex-changers: A Review. Processes 2023, 11, 1036. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; El-Ferik, S.; Al-Naser, M.; Qureshi, B.A.; Eltoum, M.A.M.; Abuelyamen, A.; Al-Sunni, F.; Ben Mansour, R. Experimental/Numerical Investigation and Prediction of Fouling in Multiphase Flow Heat Exchangers: A Review. Energies 2023, 16, 2812. [Google Scholar] [CrossRef]
- Romanowicz, T.; Taler, J.; Jaremkiewicz, M.; Sobota, T. Determination of Heat Transfer Correlations for Fluids Flowing through Plate Heat Exchangers Needed for Online Monitoring of District Heat Exchanger Fouling. Energies 2023, 16, 6264. [Google Scholar] [CrossRef]
- Wang, J.; Sun, L.; Li, H.; Ding, R.; Chen, N. Prediction Model of Fouling Thickness of Heat Exchanger Based on TA-LSTM Structure. Processes 2023, 11, 2594. [Google Scholar] [CrossRef]
- Sritham, E.; Nunak, N.; Ongwongsakul, E.; Chaishome, J.; Schleining, G.; Suesut, T. Development of Mathematical Model to Predict Soymilk Fouling Deposit Mass on Heat Transfer Surfaces Using Dimensional Analysis. Computation 2023, 11, 83. [Google Scholar] [CrossRef]
- Aikhuele, D.O.; Ighravwe, D.E.; Sorooshian, S. Intelligent Model for the Reliability of the Non-Intrusive Continuous Sensors Used for the Detection of Fouling-Layer in Heat Exchanger System. Appl. Sci. 2023, 13, 3028. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Infante, A.; Vicidomini, M. Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects. Energies 2020, 13, 2702. [Google Scholar] [CrossRef]
- Poloski, A.P.; Bredt, P.R.; Schmidt, A.; Swoboda, R.G.; Chenault, J.W.; Gano, S.R. Thermal Conductivity and Shear Strength of K Basin Sludge; Prepared for the U.S. Department of Energy under Contract DE-AC06- 76RL01830; U.S. Department of Energy: Washington, DC, USA, 2002. [Google Scholar]
- Dewil, R.; Appels, L.; Baeyens, J. Improving the heat transfer properties of waste activated sludge by advanced oxidation processes. In Proceedings of the European Congress of Chemical Engineering (ECCE-6), Copenhagen, Denmark, 16–20 September 2007. [Google Scholar]
- Wu, B. Advances in the use of CFD to characterize, design and optimize bioenergy systems. Comput. Electron. Agric. 2013, 93, 195–208. [Google Scholar] [CrossRef]
- Terradas-III, G.; Pham, C.H.; Triolo, J.M.; Martí-Herrero, J.; Sommer, S.G. Thermic Model to Predict Biogas Production in Unheated Fixed-Dome Digesters Buried in the Ground. Environ. Sci. Technol. 2014, 48, 3253–3262. [Google Scholar] [CrossRef] [PubMed]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hożejowski, L.; Teleszewski, T.J. Determining the thickness of sludge on the heat exchanger tube inside an anaerobic digester. EPJ Web Conf. 2019, 213, 02028. [Google Scholar] [CrossRef]
- Grabowski, M.; Hożejowska, S.; Maciejewska, B.; Płaczkowski, K.; Poniewski, M.E. Application of the 2-D Trefftz Method for Identification of Flow Boiling Heat Transfer Coefficient in a Rectangular MiniChannel. Energies 2020, 13, 3973. [Google Scholar] [CrossRef]
- Piasecka, M.; Hożejowska, S.; Maciejewska, B.; Pawińska, A. Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink. Energies 2021, 14, 1832. [Google Scholar] [CrossRef]
- Hożejowska, S.; Piasecka, M. Numerical Solution of Axisymmetric Inverse Heat Conduction Problem by the Trefftz Method. Energies 2020, 13, 705. [Google Scholar] [CrossRef]
- Frąckowiak, A.; Wróblewska, A.; Ciałkowski, M. Trefftz numerical functions for solving inverse heat conduction problems. Int. J. Therm. Sci. 2022, 177, 107566. [Google Scholar] [CrossRef]
- Pugh, S.J.; Hewitt, G.F.; Müller-Steinhagen, H. Fouling During the Use of “Fresh” Water as Coolant—The Development of a “User Guide”. Heat Transf. Eng. 2009, 30, 851–858. [Google Scholar] [CrossRef]
- Kosobucki, P.; Buszewski, B.; Górski, Ł. The Influence of Temperature on the Process of Dynamic Methane Fermentation of Sewage Sludge. Pol. J. Environ. Stud. 2008, 17, 369–375. [Google Scholar]
- Bień, J.; Wystalska, K. Sewage Sludge: Theory and Practice; Publishing House of Czestochowa University of Technology: Częstochowa, Poland, 2011. (In Polish) [Google Scholar]
Date | Ta | Tw,i | Tw,o | S (1D Model) | S (2D Model) |
---|---|---|---|---|---|
- | °C | °C | °C | mm | mm |
December 2017 | 40.7 | 55.0 | 44.1 | 0.00 | 0.00 |
January 2018 | 41.9 | 55.2 | 45.8 | 0.30 | 0.14 |
February 2018 | 39.1 | 55.6 | 44.2 | 0.54 | 0.38 |
December 2018 | 42.0 | 55.8 | 48.0 | 3.54 | 3.37 |
January 2019 | 41.3 | 59.1 | 49.0 | 3.44 | 3.27 |
February 2019 | 42.0 | 58.0 | 49.0 | 3.60 | 3.44 |
December 2019 | 42.2 | 56.9 | 49.2 | 4.89 | 4.73 |
January 2020 | 42.0 | 58.1 | 50.0 | 5.67 | 5.50 |
February 2020 | 41.5 | 58.0 | 50.0 | 6.43 | 6.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleszewski, T.J.; Hożejowski, L. Estimating Sludge Deposition on the Heat Exchanger in the Digester of a Biogas Plant. Sustainability 2024, 16, 7981. https://doi.org/10.3390/su16187981
Teleszewski TJ, Hożejowski L. Estimating Sludge Deposition on the Heat Exchanger in the Digester of a Biogas Plant. Sustainability. 2024; 16(18):7981. https://doi.org/10.3390/su16187981
Chicago/Turabian StyleTeleszewski, Tomasz Janusz, and Leszek Hożejowski. 2024. "Estimating Sludge Deposition on the Heat Exchanger in the Digester of a Biogas Plant" Sustainability 16, no. 18: 7981. https://doi.org/10.3390/su16187981