Biotic Translocation of Phosphorus: The Role of Deer in Protected Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Swiss National Park
3. Results
3.1. Red Deer as an Agent of P Translocation in the Swiss National Park
3.2. Phosphorous Translocations at the Scale of the Red Deer Population
3.3. Density of Red Deer in the Swiss National Park
3.4. Phosphorus in Female Red Deer
3.5. Mass Balance for P for Female Red Deer
3.6. Mass Balance for P for Male Red Deer
3.7. Red Deer Uptake of P on Winter Ranges and Its Contribution to the Summer Range Balance
3.8. Mass Balance for Total P Export from of the Swiss National Park due to Red Deer
Variable | Parameter | Source |
---|---|---|
Deer population in the SNP as summer range | ||
total number of deer | 2000 | [13,18] |
vegetated area | 8,500 ha | [18] |
population growth rate | 30%, estimate, as it can be 35% | [23] |
winter range | Mainly outside SNP | [18] |
Red deer, national park Nahuel Huapi, Argentina | ||
female body weight | 120 kg (n = 7) | Flueck unpubl. |
male body weight | 240 kg | |
Phosphorus in female red deer | ||
bone mass | 10% of body weight | [19,20] |
[P] in wet bone | 12.74% | [21] |
[P] in soft tissue | 15% above bone content | [8] |
[P] in whole body | 1.47% | [8,19,20,21] |
P in female of 120kg | 1.76 kg | [8,19,20,21] |
Phosphorus in male red deer | ||
[P] in wet bone | 12.74% | [21] |
[P] in soft tissue | 15% above bone content | [8] |
[P] in fresh antler | 13.5% | [21,25,26] |
antler weight, 8 year old male | 6.0 kg (n = 151) | Flueck unpubl. |
lifetime shed antlers to 7 years of age | 21 kg | Flueck unpubl. |
3.9. How Does the Export Rate of 0.32 kg/ha/yr of P Estimated for the SNP Compare to Other Systems?
Fluxes of phosphorus in the SNP and in other extensive production systems | ||||
---|---|---|---|---|
Loss of P from biomass export | Input as P fertilizer | Source | ||
Harvest scheme | kg/ha/yr | total kg/ha | kg/ha/yr | |
SNP, red deer movement | 0.32 | this study | ||
sheep, Scotland | 0.23 | 16 | [32] | |
cattle, Alps, currently | 0.22 | [58] | ||
cattle, Alps, traditionally | 0.30 | [58] | ||
cattle, Argentina | 0.30 | [33,34] | ||
sheep, cattle | 15-20% of P uptake | 10-50 | [35,36] | |
cattle, no fertilizer | extractable P fell 67% in 50 years, from 45 to 15 ppm | [35] | ||
tree log harvest | 0.08 - 1.02 | [38] | ||
10 – 25 per harvest | 15 - 30 | [39,40] | ||
whole-tree harvest | 0.24 - 1.75 | [38] | ||
20 – 50 per harvest | 15 - 30 | [39,40] |
4. Discussion
4.1. The Importance of the Macronutrient Phosphorus
4.2. General Implications
Acknowledgements
References
- Moe, S.J.; Stelzer, R.S.; Forman, M.R.; Harpole, W.S.; Daufresne, T.; Yoshida, T. Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos 2005, 109, 29–39. [Google Scholar]
- DeAngelis, D.L. Dynamics of Nutrient Cycling and Food Webs; Chapman & Hall: London, U.K, 1992. [Google Scholar]
- Yanai, R.D. Phosphorus budget of a 70-year-old northern hardwood forest. Biogeochemistry 1992, 17, 1–22. [Google Scholar]
- Ballantyne, F.; Menge, D.L.; Ostling, A.; Hosseini, P. Nutrient recycling affects autotroph and ecosystem stoichiometry. Amer. Naturalist 2008, 171, 511–523. [Google Scholar]
- Hedin, L.O.; Armesto, J.J; Johnson, A.H. Pattern of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 1995, 76, 493–509. [Google Scholar]
- Chadwick, O.A.; Vitousek, P.M.; Huebert, B.J.; Hedin, L.O; Derry, L.A. Changing sources of nutrients during four million years of ecosystem development. Nature 1999, 397, 491–497. [Google Scholar]
- Abelson, P.H. A potential phosphate crisis. Science 1999, 283, 2015. [Google Scholar]
- Smil, V. Phosphorus in the environmnet: Natural Flows and Human Interferences. Annu. Rev. Energy Environ. 2000, 25, 53–88. [Google Scholar]
- Ingerslev, M. Vitalization of Mature Norway Spruce Stands by Fertilization and Liming; The Research Series, Vol. 23; Danish Forest and Landscape Research Institute: Horsholm, Denmark, 1998; Volume 23, pp. 1–126. [Google Scholar]
- Yanai, R.D. The effect of whole-tree harvest on phosphorus cycling in a northern hardwood forest. Forest Ecol. Manage. 1998, 104, 281–295. [Google Scholar]
- Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 2001, 51, 227–234. [Google Scholar]
- Wivstad, M.; Dahlin, A.S.; Grant, C. Perspectives on nutrient management in arable farming systems. Soil Use Manage. 2005, 21, 113–121. [Google Scholar]
- Schütz, M.; Risch, A.C.; Achermann, G.; Thiel-Egenter, C.; Page-Dumroese, D.S.; Jurgensen, M.F.; Edwards, P.J. Phosphorus translocation by red deer on a subalpine grassland in the central European Alps. Ecosystems 2006, 9, 624–633. [Google Scholar]
- Whitehead, G.K. The Whitehead Encyclopedia of Deer, Swan Hill Press: Shrewsbury, U.K., 1993.
- Woodmansee, R.G.; Duncan, D.A. Nitrogen and phosphorus dynamics and budgets in annual grasslands. Ecology 1980, 61, 893–904. [Google Scholar]
- Filli, F.; Suter, W. Ungulate research in the Swiss National park. Nationalpark-Forsch. Schweiz 2006, 93, 1–241. [Google Scholar]
- Flueck, W.T.; Smith-Flueck, J.M. Can energy deficiency cause deer die-offs on northern mountain ranges? An exploratory analysis of Odocoileus hemionus. Z. Jagdwiss. 1996, 42, 85–96. [Google Scholar]
- Haller, H. Der Rothirsch im Schweizerischen Nationalpark und dessen Umgebung. Eine alpine Population von Cervus elaphus zeitlich und räumlich dokumentiert. Nationalpark-Forsch. Schweiz 2002, 91, 1–144. [Google Scholar]
- Hakonson, T.E.; Whicker, F.W. The contribution of various tissues and organs to total body mass in the Mule deer. J. Mammal. 1971, 52, 628–630. [Google Scholar]
- Bubenik, A.B. Rotwildhege auf biologischer Grundlage. Z. Jagdwiss. 1959, 5, 121–132. [Google Scholar]
- McCullough, D.R.; Ullrey, D.E. Proximate mineral and gross energy composition of white-tailed deer. J. Wildlife Manage. 1983, 47, 430–441. [Google Scholar]
- Flueck, W.T. Population regulation in large northern herbivores: evolution, thermodynamics, and large predators. Eur. J. Wildl. Res. 2000, 46, 139–166. [Google Scholar]
- Challies, C.N. Status and future management of the wild animal recovery industry. N. Z. Forest. 1991, 36, 10–17. [Google Scholar]
- Suttie, J.M.; Goodall, E.D.; Pennie, K.; Kay, R.N.B. Winter food restriction and summer compensation in red deer stags (Cervus elaphus). Brit. J. Nutr. 1983, 50, 737–747. [Google Scholar]
- Bernhard, K.; Brubacher, G.; Hediger, H.; Bruhin, H. Untersuchungen über chemische Zusammensetzung und Aufbau des Hirschgeweihes. Cell. Mol. Life Sci. 1953, 9, 138–140. [Google Scholar]
- Grasman, B.T.; Hellgren, E.C. Phosphorus nutrition in white-tailed deer: Nutrient balance, physiological responses, and antler growth. Ecology 1993, 74, 2279–2296. [Google Scholar]
- Suttie, J.M.; Corson, I.D.; Fennessy, P.F. Voluntary intake, testis development and antler growth patterns of male red deer under manipulated photoperiod. Proc. N. Z. Soci. Anim. Prod. 1984, 44, 167–170. [Google Scholar]
- Kay, R.N.B. Body size, patterns of growth, and efficiency of production in red deer. In Biology of Deer Production; Fennessy, P.F., Drew, K.R., Eds.; The Royal Society of New Zealand: Wellington, New Zealand, 1985; pp. 411–421. [Google Scholar]
- Mitchell, B.; McCowan, D.; Nicholson, I.A. Annual cycles of body weight and condition in Scottish red deer, Cervus elaphus. J. Zool. (Lond.) 1976, 180, 107–127. [Google Scholar]
- Bartmann, R.M. Growth rates of mule deer fetuses under different winter conditions. Great Basin Natur. 1986, 46, 245–248. [Google Scholar]
- Peter, M.; Gigon, A.; Edwards, P.; Lüscher, A. Nutrient-poor grasslands are still biodiversity hotspots in the Swiss Alps. Verhand. Gesell. Ökol. 2006, 36, 280. [Google Scholar]
- Haygarth, P.M.; Chapman, P.J.; Jarvis, S.C.; Smith, R.Y. Phosphorus budgets for two contrasting grassland farming systems in the UK. Soil Use Manage. 1998, 14, 160–167. [Google Scholar]
- Veneciano, J.H.; del C. Lartigue, E. Pérdidas de fósforo en suelos con uso ganadero. Rev. Soc. Rur. Jesús María (Arg.) 2001, 128, 9–14. [Google Scholar]
- Veneciano, J.H.; Frigerio, K.L. Macronutrientes primarios exportados por los agroecosistemas extensivos de San Luis; EEA San Luis INTA, Información Técnica No. 160: Villa Mercedes, Argentina, 2002. [Google Scholar]
- Díaz-Zorita, M. Ciclado de nutrientes en sistemas pastoriles; INTA: General Villegas, Buenos Aires, Argentina, 2002. [Google Scholar]
- Saggar, S.; Hedley, A.D.; Mackay, M.J.; Lambert, M.G.; Clark, D.A. A nutrient-transfer model to explain the fate of phosphorus and sulphur in a grazed hill-country pasture. Agr. Ecosyst. Environ. 1990, 30, 295–315. [Google Scholar]
- Bishopp, D.V. Aphosphorosis and phosphate reserves. Nature 1946, 4001, 25. [Google Scholar]
- Mann, L.K.; Johnson, D.W.; West, D.C.; Cole, D.W.; Hornbeck, J.W.; Martin, C.W.; Riekerk, H.; Smith, C.T.; Swank, W.T.; Tritton, L.M.; van Lear, D.H. Effects of whole-tree and stem-only clearcutting on postharvest hydrologic losses, nutrient capital, and regrowth. Forest Sci. 1988, 34, 412–428. [Google Scholar]
- Federer, C.A.; Hornbeck, J.W.; Tritton, L.M.; Martin, C.W.; Pierce, R.S.; Smith, C.T. Long-term depletion of calcium and other nutrients in Eastern US forests. Environ. Manage. 1989, 13, 593–601. [Google Scholar]
- Heilman, P.; Norby, R.J. Nutrient cycling and fertility management in temperate short rotation forest systems. Biomass Bioenerg. 1998, 14, 361–370. [Google Scholar]
- Wetzel, P.R.; van der Valk, A.G.; Newman, S.; Gawlik, D.E.; Troxler Gann, T.; Coronado-Molina, C.A.; Childers, D.L.; Sklar, F.H. Maintaining tree islands in the Florida Everglades: nutrient redistribution is the key. Front. Ecol. Environ. 2005, 3, 370–376. [Google Scholar]
- Altendorf, K.B.; Laundre, J.W.; Lopez Gonzalez, C.A.; Brown, J.S. Assessing effects of predation risk on foraging behavior of mule deer. J. Mammal. 2001, 82, 430–439. [Google Scholar]
- Atwood, T.C.; Gese, E.M.; Kunkel, K.E. Comparative patterns of predation by cougars and recolonizing wolves in Montana’s Madison range. J. Wildlife Manage. 2007, 71, 1098–1106. [Google Scholar]
- Butler, L.G.; Kielland, K. Acceleration of vegetation turnover and element cycling by mammalian herbivory in riparian ecosystems. J. Ecol. 2008, 96, 136–144. [Google Scholar]
- Gillooly, J.F.; Allen, A.P.; Brown, J.H.; Elser, J.J.; Martinez del Rio, C.; Savage, V.M.; West, G.B.; Woodruff, W.H.; Wood, A.H. The metabolic basis of whole-organism RNA and phosphorus content. Proc. Nat. Acad. Sci. 2005, 102, 11923–11927. [Google Scholar]
- Asimov, I. Fact and Fancy; Avon Books: New York, NY, USA, 1962. [Google Scholar]
- Armstrong, E.F. Minerals, old and new, from the sea. Nature 1942, 150, 453–455. [Google Scholar]
- Newman, E.I. Phosphorus balance of contrasting farming systems, past and present. Can food production be sustainable? J. Appl. Ecol. 1997, 34, 1334–1347. [Google Scholar]
- Glatzel, G. The impact of historic land use and modern forestry on nutrient relations of central European forest ecosystems. Fert. Res. 1991, 27, 1–8. [Google Scholar]
- McIntosh, P.D.; Patterson, R.G.; Aubrey, B.; Morriss, J.; Giddens, K.; Ogle, G.I. Changes of surface soil nutrients and sustainability of pastoralism on grazed hilly and steep land, South Island, New Zealand. J. Range Manage. 1996, 49, 361–367. [Google Scholar]
- Jones, R.E.; Dowling, P.M. Sustainability, Externalities and Economics: the Case of Temperate Perennial Grazing Systems in NSW; Economic Research Report No. 24; NSW Department of Primary Industries: Orange, Australia, 2004; pp. 1–27. [Google Scholar]
- Gerber, P.; Chilonda, P.; Franceschini, G.; Menzi, H. Geographical determinants and environmental implications of livestock production intensification in Asia. Bioresource Technol. 2005, 96, 263–276. [Google Scholar]
- Cohen, R.D. Phosphorus in rangeland ruminant nutrition: a review. Livest. Prod. Sci. 1980, 7, 25–37. [Google Scholar]
- Flueck, W.T.; Smith-Flueck, J.M. Herbicides and forest biodiversity: an alternative perspective. Wildlife Soc. Bull. 2006, 34, 1472–1478. [Google Scholar]
- Flueck, W.T. Offspring sex ratio in relation to body reserves in red deer (Cervus elaphus). Eur. J. Wildl. Res. 2002, 48, S99. [Google Scholar]
- Raesfeld, F.V. Das Rotwild, 9th edition; Verlag Paul Parey: Hamburg, Germany, 1988. [Google Scholar]
- Odum, E.P. Prinzipien der Ökologie: Lebensräume, Stoffkreisläufe; Spektrum-der-Wissenschaft-Verlagsgesellschaft: Heidelberg, Germany, 1991. [Google Scholar]
- Jewell, P.L.; Kauferle, D.; Gusewell, S.; Berry, N.R.; Kreuzer, M.; Edwards, P.J. Redistribution of phosphorus by cattle on a traditional mountain pasture in the Alps. Agr. Ecosyst. Environ. 2007, 122, 377–386. [Google Scholar]
- Meyer, D.L.; Filli, F. Summer and winter ranges of red deer hinds Cervus elaphus in the Swiss National park. Nationalpark-Forsch. Schweiz 2006, 93, 79–103. [Google Scholar]
- Towne, E.G. 2000. Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 2000, 122, 232–239. [Google Scholar]
- Wilson, D.; Read, J.L. Kangaroo harvesters: fertilising the rangelands. Rangeland J. 2003, 25, 47–55. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Flueck, W.T. Biotic Translocation of Phosphorus: The Role of Deer in Protected Areas. Sustainability 2009, 1, 104-119. https://doi.org/10.3390/su1020104
Flueck WT. Biotic Translocation of Phosphorus: The Role of Deer in Protected Areas. Sustainability. 2009; 1(2):104-119. https://doi.org/10.3390/su1020104
Chicago/Turabian StyleFlueck, Werner T. 2009. "Biotic Translocation of Phosphorus: The Role of Deer in Protected Areas" Sustainability 1, no. 2: 104-119. https://doi.org/10.3390/su1020104