Balance, Gait, Functionality and Fall Occurrence in Adults and Older Adults with Type 2 Diabetes Mellitus and Associated Peripheral Neuropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alvarenga, K.F. Cognitive P300 potential in subjects with diabetes mellitus. Braz. J. Otorhinolaryngol. 2005, 71, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Sommerfield, A.J.; Deary, I.J.; Frier, B.M. Acute hyperglycemia alters mood state and impairs cognitive performance in people with type 2 diabetes. Diabetes Care 2004, 27, 2335–2340. [Google Scholar] [CrossRef] [PubMed]
- Khawaja, N.; Abu-Shennar, J.; Saleh, M.; Dahbour, S.S.; Khader, Y.S. The prevalence and risk of peripheral neuropathy among patients with type 2 diabetes mellitus; the case of Jordan. Diabetol. Metab. Syndr. 2018, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Y.; Zhang, X.; Zhu, S.; He, H. Prevalence of peripheral neuropathy in patients with diabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2020, 14, 435–444. [Google Scholar] [CrossRef]
- Said, G. Diabetic neurophaty—A review. Nat. Clin. Pract. Neurol. 2007, 3, 331–340. [Google Scholar] [CrossRef]
- Nascimento, O.J.M.D.; Pupe, C.C.B.; Cavalcanti, E.B.U. Diabetic neuropathy. Rev. Dor. 2016, 17, 46–51. [Google Scholar] [CrossRef]
- Dickstein, R. Stance stability with unilateral and bilateral light touch of an external stationary object. Somatosens. Mot. Res. 2005, 22, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Sacco, I.d.C.N.; João, S.M.A.; Alignani, D.; Ota, D.K.; Sartor, C.D.; Silveira, L.T.; Gomes, A.A.; Cronfli, R.; Bernik, M. Implementing a clinical assessment protocol for sensory and skeletal function in diabetic neuropathy patients at a university hospital in Brazil. Sao Paulo Med. J. 2005, 123, 229–233. [Google Scholar] [CrossRef]
- Hewston, P.; Deshpande, N. Fear of falling and balance confidence in older adults with type 2 diabetes mellitus: A scoping review. Can. J. Diabetes 2018, 42, 664–670. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, X.; Zhang, Q.; Zou, R. Diabetes mellitus and risk of falls in older adults: A systematic review and meta-analysis. Age Ageing 2016, 45, 761–767. [Google Scholar] [CrossRef]
- Horak, F.B.; Dickstein, R.; Peterka, R.J. Diabetic neuropathy and surface sway-referencing disrupt somatosensory information for postural stability in stance. Somatosens. Mot. Res. 2002, 19, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Gregg, E.W.; Beckles, G.L.; Williamson, D.F.; Leveille, S.G.; Langlois, J.A.; Engelgau, M.M.; Narayan, K.M. Diabetes and physical disability among older U.S. adults. Diabetes Care 2000, 23, 1272–1277. [Google Scholar] [CrossRef]
- Corriveau, H.; Prince, F.; Hébert, R.; Raîche, M.; Tessier, D.; Maheux, P.; Ardilouze, J.L. Evaluation of postural stability in elderly with diabetic neuropathy. Diabetes Care 2000, 23, 1187–1191. [Google Scholar] [CrossRef]
- van Sloten, T.T.; Savelberg, H.H.; Duimel-Peeters, I.G.; Meijer, K.; Henry, R.M.; Stehouwer, C.D.; Schaper, N.C. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res. Clin. Pract. 2011, 91, 32–39. [Google Scholar] [CrossRef]
- Sousa, A.S.P.; Silva, A.; Tavares, J.M.R.S. Biomechanical and neurophysiological mechanisms related to postural control efficiency of movement: A review. Somatosens. Mot. Res. 2012, 29, 131–143. [Google Scholar] [CrossRef] [PubMed]
- McKeon, P.O.; Hertel, J. Plantar hypoesthesia alters time-to-boundary measures of postural control. Somatosens. Mot. Res. 2007, 24, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Malta, M.; Cardoso, L.O.; Bastos, F.I.; Magnanini, M.M.; Silva, C.M. STROBE initiative: Guidelines on reporting observational studies. Rev. Saúde Publica 2010, 44, 559–565. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef]
- Miyamoto, S.; Junior, I.L.; Berg, K.; Ramos, L.; Natour, J. Brazilian version of the Berg balance scale. Braz. J. Med. Biol. Res. 2004, 37, 1411–1421. [Google Scholar] [CrossRef]
- De Castro, S.M.; Perracini, M.R.; Ganança, F.F. Dynamic gait index—Brazilian Version. Braz. J. Otorhinolaryngol. 2006, 72, 817–825. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.d.S.; da Silva, P.W.A.; Tassitano, R.M.; Macky, C.F.S.T.; da Silva, L.V.C. Balance and gait evaluation: Comparative study between deaf and hearing students. Rev. Paul. Pediatr. 2012, 30, 385–391. [Google Scholar] [CrossRef]
- Duarte, Y.A.d.O.; de Andrade, C.L.; Lebrão, M.L. Katz index on elderly functionality evaluation. Rev. Esc. Enferm. USP 2007, 41, 317–325. [Google Scholar] [CrossRef]
- Lemos, J.F.; Araújo, L.M.C.; Guimarães-do-Carmo, V.J.; Cardoso, E.J.A.; Raposo, M.C.F.; Melo, R.S. Prevalence, affected joints and intensity of the arthralgias in individuals in the chronic phase of Chikungunya fever. Braz. J. Pain 2021, 4, 108–112. [Google Scholar] [CrossRef]
- Matias, N.M.d.S.; Bezerra, L.; Nascimento, S.E.d.A.; Ferreira, P.G.d.S.; Raposo, M.C.F.; Melo, R.d.S. Correlation between musculoskeletal pain and stress levels in teachers during the remote teaching period of the COVID-19 pandemic. Fisioter. Mov. 2022, 35, e35140. [Google Scholar] [CrossRef]
- Araújo, L.M.C.; Guimarães-Do-Carmo, V.J.; Andrade, T.G.V.S.; Claudino, S.C.; Soares, D.M.; Melo, R.S. Musculoskeletal pain and quality of life in mothers of children with microcephaly, due to congenital Zika virus syndrome. Child Care Health Dev. 2022, 49, 268–280. [Google Scholar] [CrossRef]
- Aslibeigi, F.; Zarrinkoob, H. Review of the impact of type 2 diabetes mellitus on balance system performance and fear of falling in the elderly. Sci. J. Rehabil. Med. 2022, 10, 1156–1167. [Google Scholar] [CrossRef]
- Hicks, C.W.; Selvin, E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr. Diabetes Rep. 2019, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xing, P.; Cai, X.; Luo, D.; Li, R.; Lloyd, C.; Sartorius, N.; Li, M. Prevalence and risk factors for diabetic peripheral neuropathy in type 2 diabetic patients from 14 countries: Estimates of the INTERPRET-DD study. Front. Public Health 2020, 8, 534372. [Google Scholar] [CrossRef]
- Akhtar, S.; Hassan, F.; Saqlain, S.R.; Ali, A.; Hussain, S. The prevalence of peripheral neuropathy among the patients with diabetes in Pakistan: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 11744. [Google Scholar] [CrossRef]
- Oddsson, L.I.E.; De Luca, C.J.; Meyer, P.F. The role of plantar cutaneous sensation in unperturbed stance. Exp. Brain Res. 2004, 156, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S.L.; Mansfield, A.; Inness, E.L.; Patterson, K.K. The relationship of plantar cutaneous sensation and standing balance post-stroke. Top. Stroke Rehabil. 2016, 23, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.J.; Minor, S.D.; A Sahrmann, S.; A Schaaf, J.; Strube, M.J. Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with age-matched controls. Phys. Ther. 1994, 74, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Kim, D.J.; Noh, J.; Yoo, J.; Moon, J. Comparison of balance ability between patients with type 2 diabetes and with and without peripheral neuropathy. PM&R 2013, 6, 209–214. [Google Scholar] [CrossRef]
- Deshpande, N.; Hewston, P.; Aldred, A. Sensory functions, balance, and mobility in older adults with type 2 diabetes without overt diabetic peripheral neuropathy: A brief report. J. Appl. Gerontol. 2015, 36, 1032–1044. [Google Scholar] [CrossRef]
- Kraiwong, R.; Vongsirinavarat, M.; Hiengkaew, V.; Wågert, P.V.H. Effect of sensory impairment on balance performance and lower limb muscle strength in older adults with type 2 diabetes. Ann. Rehabil. Med. 2019, 43, 497–508. [Google Scholar] [CrossRef]
- Camargo, M.R.; Barela, J.A.; Nozabieli, A.J.; Martinelli, A.R.; Fregonesi, C.E. Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy. Diabetes Metab. Syndr. 2015, 9, 79–84. [Google Scholar] [CrossRef]
- Chenamgere, G.S.K.; Maiya, A.G.; Manjunath, H.H.; Kadacigere, V.R.; Vidhyasagar, S. Analysis of gait characteristics using a dynamic foot scanner in type 2 diabetes mellitus without peripheral neuropathy. J. Exerc. Sci. Physiother. 2015, 11, 58–64. [Google Scholar]
- Khalil, S.H.A.; El Deeb, H.M.A.; Ajang, M.O.D.; Osman, N.A.; Amin, N.G. Impact of diabetic peripheral neuropathy on gait abnormalities in patients with type 2 diabetes mellitus. Diabetol. Int. 2023, 15, 58–66. [Google Scholar] [CrossRef]
- Brach, J.S.; Talkowski, J.B.; Strotmeyer, E.S.; Newman, A.B. Diabetes mellitus and gait dysfunction: Possible explanatory factors. Phys. Ther. 2008, 88, 1365–1374. [Google Scholar] [CrossRef]
- Meier, M.-R.; Desrosiers, J.; Bourassa, P.; Blaszczyk, J. Effect of Type II diabetic peripheral neuropathy on gait termination in the elderly. Diabetologia 2001, 44, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Lord, S.R.; St George, R.; Fitzpatrick, R.C. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch. Phys. Med. Rehabil. 2004, 85, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Deng, F.; Rui, S.; Ma, Y.; Wang, M.; Deng, B.; Wang, H.; Du, C.; Chen, B.; Yang, X.; et al. The evaluation of gait and balance for patients with early diabetic peripheral neuropathy: A cross-sectional study. Risk Manag. Health Policy 2022, 15, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.; Crowther, R.; Lazzarini, P.; Sangla, K.; Cunningham, M.; Buttner, P.; Golledge, J. Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clin. Biomech. 2013, 28, 831–845. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, S.; Zhang, H.; Sun, H.; Hu, J. Gait parameters and peripheral neuropathy in patients with diabetes: A meta-analysis. Front. Endocrinol. 2022, 13, 891356. [Google Scholar] [CrossRef]
- Henderson, A.D.; Johnson, A.W.; Ridge, S.T.; Egbert, J.S.; Curtis, K.P.; Berry, L.J.; Bruening, D.A. Diabetic gait is now just slow gait: Gait compensations in diabetic neuropathy. J. Diabetes Res. 2019, 2019, 4512501. [Google Scholar] [CrossRef]
- Raspovic, A. Gait characteristics of people with diabetes-related peripheral neuropathy, with and without a history of ulceration. Gait Posture 2013, 38, 723–728. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, S.; Wang, W.; Zhou, C.; Xu, L.; Qiu, J.; Wang, J.; Meng, X.; Liang, Y.; Niu, K.; et al. Poor lower extremity function was associated with pre-diabetes and diabetes in older chinese people. PLoS ONE 2014, 9, e115883. [Google Scholar] [CrossRef] [PubMed]
- Mustapa, A.; Justine, M.; Mustafah, N.M.; Jamil, N.; Manaf, H. Postural control and gait performance in the diabetic peripheral neuropathy: A systematic review. BioMed Res. Int. 2016, 2016, 9305025. [Google Scholar] [CrossRef]
- Kang, G.E.; Zhou, H.; Varghese, V.; Najafi, B. Characteristics of the gait initiation phase in older adults with diabetic peripheral neuropathy compared to control older adults. Clin. Biomech. 2020, 72, 155–160. [Google Scholar] [CrossRef]
- Wolfson, L.; Whipple, R.; Derby, C.A.; Amerman, P.; Nashner, L. Gender differences in the balance of healthy elderly as demonstrated by dynamic posturography. J. Gerontol. 1994, 49, M160–M167. [Google Scholar] [CrossRef] [PubMed]
- Lifford, K.L.; Curhan, G.C.; Hu, F.B.; Barbieri, R.L.; Grodstein, F. Type 2 diabetes mellitus and risk of developing urinary incontinence. J. Am. Geriatr. Soc. 2005, 53, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Izci, Y.; Topsever, P.; Filiz, T.M.; Çınar, N.D.; Uludağ, C.; Lagro-Janssen, T. The association between diabetes mellitus and urinary incontinence in adult women. Int. Urogynecol. J. Pelvic Floor Dysfunct. 2009, 20, 947–952. [Google Scholar] [CrossRef]
- Devore, E.E.; Townsend, M.K.; Resnick, N.M.; Grodstein, F. The epidemiology of urinary incontinence in women with type 2 diabetes. J. Urol. 2012, 188, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Nazzal, Z.; Khatib, B.; Al-Quqa, B.; Abu-Taha, L.; Jaradat, A. The prevalence and risk factors of urinary incontinence amongst Palestinian women with type 2 diabetes mellitus: A cross-sectional study. Arab. J. Urol. 2019, 18, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Larkin, P.A.; Cook, A.C.; Gear, J.; Singer, J. Decrease in timed balance test scores with aging. Phys. Ther. 1984, 64, 1067–1070. [Google Scholar] [CrossRef]
- Laughton, C.A.; Slavin, M.; Katdare, K.; Nolan, L.; Bean, J.F.; Kerrigan, D.; Phillips, E.; Lipsitz, L.A.; Collins, J.J. Aging, muscle activity, and balance control: Physiologic changes associated with balance impairment. Gait Posture 2003, 18, 101–108. [Google Scholar] [CrossRef]
- Aslan, U.B.; Cavlak, U.; Yagci, N.; Akdag, B. Balance performance, aging and falling: A comparative study based on a Turkish sample. Arch. Gerontol. Geriatr. 2008, 46, 283–292. [Google Scholar] [CrossRef]
- Pang, B.W.J.; Wee, S.-L.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Ng, D.H.M.; Tan, Q.L.L.; Chen, K.K.; Jagadish, M.U.; Ng, T.P. Sensorimotor performance and reference values for fall risk assessment in community-dwelling adults: The Yishun study. Phys. Ther. 2021, 101, pzab035. [Google Scholar] [CrossRef]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporany review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef]
- Qiao, M.; Feld, J.A.; Franz, J.R. Aging effects on leg joint variability during walking with balance perturbations. Gait Posture 2018, 62, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Magnani, R.M.; Bruijn, S.M.; van Dieën, J.H.; Vieira, M.F. Head orientation and gait stability in young adults, dancers and older adults. Gait Posture 2020, 80, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Villena, A.F.; Paima-Olivari, R.; Chambergo-Michilot, D.; Parodi, J.F.; Runzer-Colmenares, F.M. Gait and balance disorder in elderly adults and its relation to diabetes mellitus type 2. Med. Interna México 2019, 35, 676–684. [Google Scholar] [CrossRef]
- de Mettelinge, T.R.; Delbaere, K.; Calders, P.; Gysel, T.; Noortgate, N.V.D.; Cambier, D. The impact of peripheral neuropathy and cognitive decrements on gait in older adults with type 2 diabetes mellitus. Arch. Phys. Med. Rehabil. 2013, 94, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, L.J.; Lin, J.; Staecker, H.; Whitney, S.L.; Kluding, P.M. Impact of diabetic complications on balance and falls: Contribution of the vestibular system. Phys. Ther. 2016, 96, 400–409. [Google Scholar] [CrossRef]
- Vongsirinavarat, M.; Mathiyakom, W.; Kraiwong, R.; Hiengkaew, V. Fear of falling, lower extermity strength, and physical and balance performance in older adults with diabetes mellitus. J. Diabetes Res. 2020, 2020, 5873817. [Google Scholar] [CrossRef]
- Allet, L.; Armand, S.; de Bie, R.A.; Pataky, Z.; Aminian, K.; Herrmann, F.R.; de Bruin, E.D. Gait alterations of diabetic patients while walking on different surfaces. Gait Posture 2009, 29, 488–493. [Google Scholar] [CrossRef]
- Bruce, D.; Hunter, M.; Peters, K.; Davis, T.; Davis, W. Fear of falling is common in patients with type 2 diabetes and is associated with increased risk of falls. Age Ageing 2015, 44, 687–690. [Google Scholar] [CrossRef]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef]
- Sattin, R.W. Falls among older persons: A public health perspective. Annu. Rev. Public Health 1992, 13, 489–508. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk factors for falls among elderly persons living in the community. N. Engl. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.H.; Rivara, F.P.; E Wolf, M. The cost and frequency of hospitalization for fall-related injuries in older adults. Am. J. Public Health 1992, 82, 1020–1023. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.; Colberg, S.R.; Parson, H.K.; Vinik, A.I. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy. J. Diabetes Complications 2014, 28, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Salsabili, H.; Bahrpeyma, F.; Esteki, A. The effects of task-oriented motor training on gait characteristics of patients with type 2 diabetes neuropathy. J. Diabetes Metab. Disord. 2016, 15, 14. [Google Scholar] [CrossRef]
- Lima, R.A.d.O.; Piemonte, G.A.; Nogueira, C.R.; Nunes-Nogueira, V.d.S. Efficacy of exercise on balance, fear of falling, and risk of falls in patients with diabetic peripheral neuropathy: A systematic review and meta-analysis. Arch. Endocrinol. Metab. 2021, 65, 198–211. [Google Scholar] [CrossRef]
- Chapman, A.; Meyer, C.; Renehan, E.; Hill, K.D.; Browning, C.J. Exercise interventions for the improvement of falls-related outcomes among older adults with diabetes mellitus: A systematic review and meta-analyses. J. Diabetes Complicat. 2017, 31, 631–645. [Google Scholar] [CrossRef]
- Melese, H.; Alamer, A.; Hailu, M.; Kahsay, G. Effectiveness of exercise therapy on gait function in diabetic peripheral neuropathy patients: A systematic review of randomized controlled trials. Diabetes Metab. Syndr. Obes. 2020, 13, 2753–2764. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.S.; Cardeira, C.S.F.; Rezende, D.S.A.; Guimarães-Do-Carmo, V.J.; Lemos, A.; de Moura-Filho, A.G. Effectiveness of the aquatic physical therapy exercises to improve balance, gait, quality of life and reduce fall-related outcomes in healthy community-dwelling older adults: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0291193. [Google Scholar] [CrossRef] [PubMed]
- Shourabi, P.; Bagheri, R.; Ashtary-Larky, D.; Wong, A.; Motevalli, M.S.; Hedayati, A.; Baker, J.S.; Rashidlamir, A. Effects of hydrotherapy with massage on sérum nerve growth factor concentrations and balance in middle aged diabetic neuropathy patients. Complement. Ther. Clin. Pract. 2020, 39, 101141. [Google Scholar] [CrossRef]
- Abasgholipour, A.; Shahbazi, M.; Boroujeni, S.T.; Ameri, E.A. The effects of in-water and on-land aerobic training on postural sway and balance in patients with type 2 diabetes. Int. J. Diabetes Dev. Ctries. 2021, 41, 657–663. [Google Scholar] [CrossRef]
With DM2 (n = 35) | Without DM2 (n = 35) | p-Value | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Age (y) | 63.7 ± 1.52 | 61.3 ± 1.59 | 0.278 a |
Height (m) | 1.62 ± 0.10 | 1.64 ± 0.45 | 0.413 a |
Weight (kg) | 65.4 ± 2.03 | 64.3 ± 1.82 | 0.729 a |
BMI | 24.7 ± 0.58 | 24.0 ± 0.49 | 0.364 a |
Diagnosis time (mth) | 38.6 ± 2.81 | --- | --- |
Sexes: | n (%) | n (%) | |
Women | 28 (78.1) | 29 (85.3) | 0.154 b |
Men | 07 (21.9) | 06 (14.7) | |
Peripheral neuropathy | |||
Yes | 35 (100) | 0 (0) | --- |
No | 0 (0) | 35 (100) |
With DM2 (n = 35) | Without DM2 (n = 35) | p-Value | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Balance | 45.1 ± 1.16 | 52.2 ± 0.84 | 0.000 a |
Gait-related Functional Tasks | 16.1 ±0.49 | 21.5 ± 0.67 | 0.000 a |
Functional Mobility | 19.5 ± 1.02 | 12.5 ± 0.93 | 0.000 a |
Functionality | 5.69 ± 0.08 | 5.92 ± 0.05 | 0.016 a |
Women | Men | |||||
---|---|---|---|---|---|---|
With DM2 (n = 28) | Without DM2 (n = 29) | p-Value | With DM2 (n = 7) | Without DM2 (n = 6) | p-Value | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||
Balance | 45.4 ± 1.35 | 52.0 ± 0.95 | 0.000 a | 44.4 ± 2.45 | 53.5 ± 1.84 | 0.009 a |
Gait-related Functional Tasks | 15.5 ± 0.56 | 21.5 ± 0.78 | 0.000 a | 18.1 ± 0.55 | 21.7 ± 1.31 | 0.020 a |
Functional Mobility | 20.1 ± 1.27 | 12.7 ± 1.10 | 0.000 a | 17.5 ± 1.15 | 11.7 ± 0.52 | 0.017 a |
Functionality | 5.64 ± 0.10 | 5.90 ± 0.06 | 0.019 a | 5.86 ± 0.14 | 6.00 ± 0.00 | 0.398 a |
50–59 Years | 60–69 Years | ≥70 Years | |||||||
---|---|---|---|---|---|---|---|---|---|
With DM2 (n = 10) | Without DM2 (n = 14) | p-Value | With DM2 (n = 11) | Without DM2 (n = 13) | p-Value | With DM2 (n = 14) | Without DM2 (n = 8) | p-Value | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||||
Balance | 46.7 ± 1.50 | 53.1 ± 1.10 | 0.001 a | 45.7 ± 2.82 | 51.8 ± 1.65 | 0.029 a | 44.0 ± 1.70 | 51.2 ± 1.49 | 0.003 a |
Gait-related Functional Tasks | 17.4 ± 0.52 | 23.2 ± 0.61 | 0.000 a | 16.2 ± 0.57 | 20.5 ± 1.34 | 0.005 a | 14.7 ± 1.30 | 20.2 ± 1.03 | 0.008 a |
Functional Mobility | 17.7 ± 1.22 | 10.8 ± 1.12 | 0.006 a | 19.5 ± 1.51 | 14.6 ± 1.64 | 0.039 a | 21.0 ± 2.40 | 16.0 ± 1.97 | 0.008 a |
Functionality | 5.43 ± 0.20 | 5.90 ± 0.10 | 0.056 a | 5.90 ± 0.12 | 5.90 ± 0.10 | 0.722 a | 5.71 ± 0.12 | 5.70 ± 0.78 | 0.125 a |
With DM2 (n = 35) | Without DM2 (n = 35) | p-Value | |
---|---|---|---|
n (%) | n (%) | ||
Yes | 19 (54) | 9 (24.3) | 0.019 a |
No | 16 (46) | 26 (75.7) |
Y | Independent Variables | With DM2 | Without DM2 | ||||
---|---|---|---|---|---|---|---|
Coefficient ß | p-Value (*) | r2 in % | Coefficient ß | p-Value (*) | r2 in % | ||
Balance | Age | 0.447 | 0.002 | 97.7 | 0.327 | 0.001 | 99.3 |
BMI | 0.494 | 0.157 | 1.205 | 0.000 | |||
Gait-related Functional Tasks (**) | Age | 0.142 | 0.037 | 46.2 | 0.170 | 0.001 | 16.9 |
BMI | 0.293 | 0.091 | 0.383 | 0.002 | |||
Functional Mobility | Age | 0.098 | 0.090 | 93.1 | 0.065 | 0.007 | 99.0 |
BMI | 0.308 | 0.041 | 0.281 | 0.000 | |||
Functionality | Age | 0.033 | 0.052 | 97.9 | 0.040 | 0.002 | 97.1 |
BMI | 0.128 | 0.005 | 0.133 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, N.M.B.; Silva, J.M.; Silva, M.D.M.d.; Silva, L.D.T.; Souza, J.N.d.; Ithamar, L.; Raposo, M.C.F.; Melo, R.S. Balance, Gait, Functionality and Fall Occurrence in Adults and Older Adults with Type 2 Diabetes Mellitus and Associated Peripheral Neuropathy. Clin. Pract. 2024, 14, 2044-2055. https://doi.org/10.3390/clinpract14050161
Tavares NMB, Silva JM, Silva MDMd, Silva LDT, Souza JNd, Ithamar L, Raposo MCF, Melo RS. Balance, Gait, Functionality and Fall Occurrence in Adults and Older Adults with Type 2 Diabetes Mellitus and Associated Peripheral Neuropathy. Clinics and Practice. 2024; 14(5):2044-2055. https://doi.org/10.3390/clinpract14050161
Chicago/Turabian StyleTavares, Natália Maria Bezerra, Jonathânya Marques Silva, Mayra Darlene Morato da Silva, Letícia Danielly Tenório Silva, Jackson Nascimento de Souza, Lucas Ithamar, Maria Cristina Falcão Raposo, and Renato S. Melo. 2024. "Balance, Gait, Functionality and Fall Occurrence in Adults and Older Adults with Type 2 Diabetes Mellitus and Associated Peripheral Neuropathy" Clinics and Practice 14, no. 5: 2044-2055. https://doi.org/10.3390/clinpract14050161