Characterization of Immune Cell Populations and Acid-Sensing Receptors in the Human Esophagus
Abstract
:1. Introduction
2. Material and Methods
2.1. Biological Samples
2.2. Tissue Collection
2.3. Histological Procedures
2.3.1. Immunohistochemistry
2.3.2. Immunofluorescence
2.4. Quantitative Analysis of Immune Cells
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Structural Analysis
3.3. Distribution and Phenotype of Immune Cells in the Esophagus
3.4. Distribution of Acid-Sensing Receptors in the Esophagus
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Orlando, R.C. Esophageal mucosal defense mechanisms. GI Motil. Online 2006. [Google Scholar] [CrossRef]
- Kandulski, A.; Malfertheiner, P. Gastroesophageal reflux disease—From reflux episodes to mucosal inflammation. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.A.; Spergel, J.M. The Immunologic Mechanisms of Eosinophilic Esophagitis. Curr. Allergy Asthma Rep. 2016, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Islam, S. Achalasia. Semin. Pediatr. Surg. 2017, 26, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.A.; Ichiya, T.; Schmidt, P.T. Lymphocytic oesophagitis, eosinophilic oesophagitis and compound lymphocytic-eosinophilic oesophagitis I: Histological and immunohistochemical findings. J. Clin. Pathol. 2017, 70, 208–216. [Google Scholar] [CrossRef]
- Huang, T.-X.; Fu, L. The immune landscape of esophageal cancer. Cancer Commun. 2019, 39, 79. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Sweet, S.; Winchester, C.C.; Dent, J. Update on the epidemiology of gastro-oesophageal reflux disease: A systematic review. Gut 2014, 8, 871–880. [Google Scholar] [CrossRef]
- Tantibhaedhyangkul, U.; Tatevian, N.; Gilger, M.A.; Major, A.M.; Davis, C.M. Increased esophageal regulatory T cells and eosinophil characteristics in children with eosinophilic esophagitis and gastroesophageal reflux disease. Ann. Clin. Lab. Sci. 2009, 39, 99–107. [Google Scholar]
- Grin, A.; Streutker, C.J. Esophagitis Old Histologic Concepts and New Thoughts. Arch. Pathol. Lab. Med. 2015, 139, 723–729. [Google Scholar] [CrossRef]
- Alani, M.; Al-Jashaami, L.; Mills, M.; Guha, S.; Ratuapli, S.K. Prevalence of Esophageal Motility Disorders in an Open Access Hybrid “Academic—Community Setting” Patient Population. Off. J. Am. Coll. Gastroenterol.|ACG 2018, 113, S180–S181. [Google Scholar] [CrossRef]
- Rice, T.W.; Goldblum, J.R.; Yearsley, M.M.; Shay, S.S.; Reznik, S.I.; Murthy, S.C.; Mason, D.P.; Blackstone, E.H. Myenteric plexus abnormalities associated with epiphrenic diverticula. Eur. J. Cardio-Thorac. Surg. 2009, 35, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Farré, R. Pathophysiology of Gastro-Esophageal Reflux Disease: A Role for Mucosa Integrity? Neurogastroenterol. Motil. 2013, 25, 783–799. [Google Scholar] [CrossRef] [PubMed]
- Orlando, R.C.; Paterson, W.G.; Harnett, K.M.; Ma, J.; Behar, J.; Biancani, P.; Guarino, M.P.; Altomare, A.; Cicala, M.; Cao, W. Esophageal disease: Updated information on inflammation. Ann. N. Y. Acad. Sci. 2011, 1232, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Lucendo, A.J.; Navarro, M.; Comas, C.; Pascual, J.M.; Burgos, E. Immunophenotypic Characterization and Quantification of the Epithelial Inflammatory Infiltrate in Eosinophilic: An Analysis of the Cellular Mechanisms of the Disease and the. Am. J. Surg. Pathol. 2007, 31, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, B.G.; Kim, S.H.; Kim, W.; Lee, K.L. Histomorphological and Immunophenotypic Features of Pill-Induced Esophagitis. PLoS ONE 2015, 10, e0128110. [Google Scholar] [CrossRef]
- Matsushita, T.; Maruyama, R.; Ishikawa, N.; Harada, Y.; Araki, A.; Chen, D.; Tauchi-Nishi, P.; Yuki, T.; Kinoshita, Y. The number and distribution of eosinophils in the adult human gastrointestinal tract: A study and comparison of racial and environmental factors. Am. J. Surg. Pathol. 2015, 39, 521–527. [Google Scholar] [CrossRef]
- Putra, J.; Muller, K.E.; Hussain, Z.H.; Parker, S.; Gabbard, S.; Brickley, E.B.; Lacy, B.E.; Rothstein, R.; Lisovsky, M. Lymphocytic esophagitis in nonachalasia primary esophageal motility disorders: Improved criteria, prevalence, strength of association, and natural history. Am. J. Surg. Pathol. 2016, 40, 1679–1685. [Google Scholar] [CrossRef]
- William, G.; Paterson, M.D. Esophageal peristalsis. GI Motil. Online 2006. [Google Scholar] [CrossRef]
- Geboes, K.; Geboes, K.P.; Maleux, G. Vascular anatomy of the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2001, 15, 1–14. [Google Scholar] [CrossRef]
- Fuentebella, J.; Patel, A.; Nguyen, T.; Sanjanwala, B.; Berquist, W.; Kerner, J.A.; Bass, D.; Cox, K.; Hurwitz, M.; Huang, J.; et al. Increased number of regulatory T cells in children with eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 283–289. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Y.; Wang, J.; Xi, C.; Chen, Y.; Yang, G.; Ling, Y. Key molecules involved in the Th17/Treg balance are associated with the pathogenesis of reflux esophagitis and Barrett’s esophagus. Esophagus Off. J. Jpn. Esophageal Soc. 2021, 18, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Mousavinasab, F.; Babaie, D.; Nilipour, Y.; Mansouri, M.; Imanzadeh, F.; Dara, N.; Rohani, P.; Khatami, K.; Sayyari, A.; Khoddami, M.; et al. Increased number of regulatory T cells in esophageal tissue of patients with eosinophilic esophagitis in comparison to gastro esophageal reflux disease and control groups. Allergol. Immunopathol. 2019, 47, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Ayaki, M.; Manabe, N.; Nakamura, J.; Fujita, M.; Katsumata, R.; Haruma, K. A Retrospective Study of the Differences in the Induction of Regulatory T Cells Between Adult Patients with Eosinophilic Esophagitis and Gastroesophageal Reflux Disease. Dig. Dis. Sci. 2022, 67, 4742–4748. [Google Scholar] [CrossRef] [PubMed]
- Greuter, T.; Straumann, A.; Fernandez-Marrero, Y.; Germic, N.; Hosseini, A.; Yousefi, S.; Simon, D.; Collins, M.H.; Safroneeva, E.; Schoepfer, A.M.; et al. Characterization of eosinophilic esophagitis variants by clinical, histological, and molecular analyses: A cross-sectional multi-center study. Allergy 2022, 77, 2520–2533. [Google Scholar] [CrossRef]
- Geboes, K.; De Wolf-Peeters, C.; Rutgeerts, P.; Janssens, J.; Vantrappen, G.; Desmet, V. Lymphocytes and Langerhans cells in the human oesophageal epithelium. Virchows Arch. A Pathol. Anat. Histopathol. 1983, 401, 45–55. [Google Scholar] [CrossRef]
- Clark, S.B.; Rice, T.W.; Tubbs, R.R.; Richter, J.E.; Goldblum, J.R. The nature of the myenteric infiltrate in achalasia: An immunohistochemical analysis. Am. J. Surg. Pathol. 2000, 24, 1153–1158. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Chen, W.F.; Wang, Y.; Xu, X.Y.; Zeng, Y.G.; Dillon, D.L.; Cheng, J.; Xu, M.D.; Zhong, Y.S.; Zhang, Y.Q.; et al. Mast cell infiltration associated with loss of interstitial cells of Cajal and neuronal degeneration in achalasia. Neurogastroenterol. Motil. 2019, 31, e13565. [Google Scholar] [CrossRef]
- Albert-Bayo, M.; Paracuellos, I.; Gonzalez-Castro, A.M.; Rodriguez-Urrutia, A.; Rodriguez-Lagunas, M.J.; Alonso-Cotoner, C.; Santos, J.; Vicario, M. Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis. Cells 2019, 8, 135. [Google Scholar] [CrossRef]
- Tung, H.N.; Schulze-Delrieu, K.; Shirazi, S. Infiltration of hypertrophic esophageal smooth muscle by mast cells and basophils. J. Submicrosc. Cytol. Pathol. 1993, 25, 93–102. [Google Scholar]
- Zarate, N.; Wang, X.Y.; Tougas, G.; Anvari, M.; Birch, D.; Mearin, F.; Malagelada, J.R.; Huizinga, J.D. Intramuscular interstitial cells of Cajal associated with mast cells survive nitrergic nerves in achalasia. Neurogastroenterol. Motil. 2006, 18, 556–568. [Google Scholar] [CrossRef]
- Paterson, W.G.; Miller, D.V.; Dilworth, N.; Assini, J.B.; Lourenssen, S.; Blennerhassett, M.G. Intraluminal acid induces oesophageal shortening via capsaicin-sensitive neurokinin neurons. Gut 2007, 56, 1347–1352. [Google Scholar] [CrossRef]
- Nelson, M.; Zhang, X.; Pan, Z.; Spechler, S.J.; Souza, R.F. Mast cell effects on esophageal smooth muscle and their potential role in eosinophilic esophagitis and Achalasia. Am. J. Physiol.—Gastrointest. Liver Physiol. 2021, 320, G319–G327. [Google Scholar] [CrossRef] [PubMed]
- Mastracci, L.; Bruzzone, M.; Pacella, E.; Tinelli, C.; Zentilin, P.; Savarino, E.; De Silvestri, A.; Fiocca, R.; Grillo, F. The contribution of intraepithelial inflammatory cells to the histological diagnosis of microscopic esophagitis. Esophagus 2016, 13, 80–87. [Google Scholar] [CrossRef]
- Kirsch, R.; Bokhary, R.; Marcon, M.A.; Cutz, E. Activated mucosal mast cells differentiate eosinophilic (allergic) esophagitis from gastroesophageal reflux disease. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.A.; Koscsó, B.; Rajani, G.M.; Stevanovic, K.; Berres, M.L.; Hashimoto, D.; Mortha, A.; Leboeuf, M.; Li, X.M.; Mucida, D.; et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 2014, 158, 300–313. [Google Scholar] [CrossRef]
- Cipriani, G.; Gibbons, S.J.; Kashyap, P.C.; Farrugia, G. Intrinsic Gastrointestinal Macrophages: Their Phenotype and Role in Gastrointestinal Motility. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 120–130.e121. [Google Scholar] [CrossRef]
- Schneider, E.N.; Smoller, B.R.; Lamps, L.W. Histiocytic subpopulations in the gastrointestinal tract: Distribution and possible relationship to function. Appl. Immunohistochem. Mol. Morphol. 2004, 12, 356–359. [Google Scholar] [CrossRef]
- Cao, W.; Peters, J.H.; Nieman, D.; Sharma, M.; Watson, T.; Yu, J. Macrophage subtype predicts lymph node metastasis in oesophageal adenocarcinoma and promotes cancer cell invasion in vitro. Br. J. Cancer 2015, 113, 738–746. [Google Scholar] [CrossRef]
- Uehara, K.; Iwashita, H.; Tanabe, Y.; Kurima, K.; Oshiro, M.; Kina, S.; Ota, A.; Iwashita, A.; Kinjo, T. Esophageal xanthoma: Presence of M2 macrophages suggests association with late inflammatory and reparative processes. Open Med. 2017, 12, 335–339. [Google Scholar] [CrossRef]
- Collins, M.H.; Alexander, E.S.; Martin, L.J.; Grotjan, T.M.; Mukkada, V.A.; Sheil, A.; Abonia, J.P.; Putnam, P.E.; Rothenberg, M.E. Acquired Esophageal Strictures in Children: Morphometric and Immunohistochemical Analyses. Pediatr. Dev. Pathol. 2022, 25, 124–133. [Google Scholar] [CrossRef]
- Onbasi, K.; Sin, A.Z.; Doganavsargil, B.; Onder, G.F.; Bor, S.; Sebik, F. Eosinophil infiltration of the oesophageal mucosa in patients with pollen allergy during the season. Clin. Exp. Allergy 2005, 35, 1423–1431. [Google Scholar] [CrossRef]
- Zuo, L.; Rothenberg, M.E. Gastrointestinal Eosinophilia. Immunol. Allergy Clin. N. Am. 2007, 27, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Akhondi, H. Diagnostic approaches and treatment of eosinophilic esophagitis. A review article. Ann. Med. Surg. 2017, 20, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, S.; Abboud, G.; Oh, D.; DeMeester, S.R.; Hagen, J.; Lipham, J.; Demeester, T.R.; Chandrasoma, P. High intraepithelial eosinophil counts in esophageal squamous epithelium are not specific for eosinophilic esophagitis in adults. Am. J. Gastroenterol. 2008, 103, 435–442. [Google Scholar] [CrossRef]
- Saffari, H.; Peterson, K.A.; Fang, J.C.; Teman, C.; Gleich, G.J.; Pease, L.F. Patchy eosinophil distributions in an esophagectomy specimen from a patient with eosinophilic esophagitis: Implications for endoscopic biopsy. J. Allergy Clin. Immunol. 2012, 130, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Guarino, M.P.L.; Cheng, L.; Ma, J.; Harnett, K.; Biancani, P.; Altomare, A.; Panzera, F.; Behar, J.; Cicala, M. Increased TRPV1 gene expression in esophageal mucosa of patients with non-erosive and erosive reflux disease. Neurogastroenterol. Motil. 2010, 22, 746-e219. [Google Scholar] [CrossRef]
- Yamamura, H.; Ugawa, S.; Ueda, T.; Nagao, M.; Joh, T.; Shimada, S. Epithelial Na+ channel δ subunit is an acid sensor in the human oesophagus. Eur. J. Pharmacol. 2008, 600, 32–36. [Google Scholar] [CrossRef]
- Akiba, Y.; Mizumori, M.; Kuo, M.; Ham, M.; Guth, P.H.; Engel, E.; Kaunitz, J.D. CO2 chemosensing in rat oesophagus. Gut 2008, 57, 1654–1664. [Google Scholar] [CrossRef]
- Alvarez-Berdugo, D.; Rofes, L.; Farré, R.; Casamitjana, J.F.; Enrique, A.; Chamizo, J.; Padrón, A.; Navarro, X.; Clavé, P. Localization and expression of TRPV1 and TRPA1 in the human oropharynx and larynx. Neurogastroenterol. Motil. 2016, 28, 91–100. [Google Scholar] [CrossRef]
- Yu, S.; Undem, B.J.; Kollarik, M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J. Physiol. 2005, 563, 831–842. [Google Scholar] [CrossRef]
- Dusenkova, S.; Ru, F.; Surdenikova, L.; Nassenstein, C.; Hatok, J.; Dusenka, R.; Banovcin, P.; Kliment, J.; Kollarik, M.; Kollarik, M. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes. Am. J. Physiol.—Gastrointest. Liver Physiol. 2014, 307, G922–G930. [Google Scholar] [CrossRef] [PubMed]
- Krarup, A.L.; Villadsen, G.E.; Mejlgaard, E.; Olesen, S.S.; Drewes, A.M.; Funch-Jensen, P. Acid hypersensitivity in patients with eosinophilic oesophagitis. Scand. J. Gastroenterol. 2010, 45, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Kollarik, M.; Ouyang, A.; Myers, A.C.; Undem, B.J. Mast cell-mediated long-lasting increases in excitability of vagal C fibers in guinea pig esophagus. American journal of physiology. Gastrointest. Liver Physiol. 2007, 293, G850–G856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Z.; Heldsinger, A.; Owyang, C.; Yu, S. Intraluminal acid activates esophageal nodose C fibers after mast cell activation. American journal of physiology. Gastrointest. Liver Physiol. 2014, 306, G200–G207. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.; Lee, A.; Li, Z.; Gao, J.; Wu, X.; Zhao, J.; Wang, H.; Chen, D.; Zou, D.; et al. Upregulation of acid sensing ion channels is associated with esophageal hypersensitivity in GERD. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2022, 36, e22083. [Google Scholar] [CrossRef]
- Van Den Broek, A.H.M.; Huntley, J.F.; Mackellar, A.; Machell, J.; Taylor, M.A.; Miller, H.R.P. Characterisation of lesional infiltrates of dendritic cells and T cell subtypes during primary infestation of sheep with Psoroptes ovis, the sheep scab mite. Vet. Immunol. Immunopathol. 2005, 105, 141–150. [Google Scholar] [CrossRef]
- Hussein, M.R.; Ali, F.M.N.; Omar, A.E.M.M. Immunohistological analysis of immune cells in blistering skin lesions. J. Clin. Pathol. 2007, 60, 62–71. [Google Scholar] [CrossRef]
- Lind, A.; Koenderman, L.; Kusters, J.G.; Siersema, P.D. Squamous tissue lymphocytes in the esophagus of controls and patients with reflux esophagitis and barrett’s esophagus are characterized by a non-inflammatory phenotype. PLoS ONE 2014, 9, e106261. [Google Scholar] [CrossRef]
- Gonsalves, N. Distinct features in the clinical presentations of eosinophilic esophagitis in children and adults: Is this the same disease. Dig. Dis. 2014, 32, 89–92. [Google Scholar] [CrossRef]
- Klochkova, A.; Fuller, A.D.; Miller, R.; Karami, A.L.; Panchani, S.R.; Natarajan, S.; Mu, A.; Jackson, J.L.; Klein-Szanto, A.J.; Muir, A.B.; et al. A role for age-associated alterations in esophageal epithelium in eosinophilic esophagitis-associated fibrosis. Front. Allergy 2022, 3, 983412. [Google Scholar] [CrossRef]
Epithelium | ||||||
cell marker | CD3 | CD4 | CD8 | CD20 | CD68 | Tryptase |
Proximal | 403 (131–968) | 444 (17–1176) | 350 (47–548) | 4 (0–8) | 76 (13–244) | 22 (4–56) |
Middle | 418 (142–689) | 260 (11–580) | 260 (94–633) | 2 (0–27) | 78 (15–156) | 15 (8–22) |
Distal | 229 (95–315) | 234 (12–362) | 130 (20–616) | 0 (0–13) | 61 (1–120) | 22 (4–79) |
Vascular papillae | ||||||
cell marker | CD3 | CD4 | CD8 | CD20 | CD68 | Tryptase |
Proximal | 2008 (1190–2826) | 2266 (0–8452) | 278 (0–767) | 294 (0–924) | 1049 (486–2021) | 1272 (904–5481) |
Middle | 994 (615–1414) | 2057 (304–13,999) | 433 (0–601) | 0 (0–350) | 1747 (1120–2193) | 202 (0–1907) |
Distal | 478 (0–3373) | 1183 (12–2608) | 497 (0–1833) | 0 (0–280) | 1430 (198–2297) | 1581 (25–5186) |
Lamina propria | ||||||
cell marker | CD3 | CD4 | CD8 | CD20 | CD68 | Tryptase |
Proximal | 749 (283–1650) | 1130 (16.5–1592) | 264 (153–1459) | 96 (0–253) | 846 (132–1835) | 350 (142–596) |
Middle | 601 (70–947) | 1108 (134–1631) | 222 (121–290) | 166 (0–330) | 928 (604–1186) | 330 (252–391) |
Distal | 698 (53–1028) | 623 (99.5–2239) | 202 (108–703) | 29 (0–100) | 414 (70–1338) | 392 (214–587) |
Muscularis mucosae | ||||||
cell marker | CD3 | CD4 | CD8 | CD20 | CD68 | Tryptase |
Proximal | 0 (0–95) | 0 (0–144.5) | 5 (0–16) | 0 (0–0) | 123 (93–183) | 245.5 (0–350) |
Middle | 13 (0–22) | 43 (0–67.5) | 19 (8–31) | 0 (0–0) | 187 (132–228) | 206 (151–266) |
Distal | 41 (0–114) | 24 (0–2239) | 2.5 (0–32) | 0 (0–0) | 174 (38–357) | 149.5 (80-5–294) |
Muscularis propria | ||||||
cell marker | CD3 | CD4 | CD8 | CD20 | CD68 | Tryptase |
Proximal | 0 (0–22.5) | 6.5 (0–21) | 9 (0–142) | 0 (0–8) | 72 (10–294) | 65 (0–216) |
Middle | 6.5 (0–14) | 6.5 (0–33) | 57.5 (18.5–89.5) | 0 (0–0) | 258 (27.5–356) | 208 (135–252) |
Distal | 9 (0–46) | 19 (0–123) | 29 (5–81) | 0 (0–4.5) | 102 (12.5–342) | 85 (20–351) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortea, M.; Hacour, L.; Sancho, F.; Boada, C.; Sevillano-Aguilera, C.; González-Castro, A.M.; Salvo-Romero, E.; Lobo, B.; Guagnozzi, D.; Ceulemans, L.J.; et al. Characterization of Immune Cell Populations and Acid-Sensing Receptors in the Human Esophagus. Gastroenterol. Insights 2024, 15, 819-834. https://doi.org/10.3390/gastroent15030058
Fortea M, Hacour L, Sancho F, Boada C, Sevillano-Aguilera C, González-Castro AM, Salvo-Romero E, Lobo B, Guagnozzi D, Ceulemans LJ, et al. Characterization of Immune Cell Populations and Acid-Sensing Receptors in the Human Esophagus. Gastroenterology Insights. 2024; 15(3):819-834. https://doi.org/10.3390/gastroent15030058
Chicago/Turabian StyleFortea, Marina, Leen Hacour, Francesc Sancho, Carlos Boada, Cesar Sevillano-Aguilera, Ana María. González-Castro, Eloisa Salvo-Romero, Beatriz Lobo, Danila Guagnozzi, Laurens J. Ceulemans, and et al. 2024. "Characterization of Immune Cell Populations and Acid-Sensing Receptors in the Human Esophagus" Gastroenterology Insights 15, no. 3: 819-834. https://doi.org/10.3390/gastroent15030058